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- ABSTRACT 

As a phase of a program t o  e s t a b l i s h  the engineer ing f e a s i -  

b i l i t y  of t he  process  f o r  producing s i l i c o n  by the z inc  vapor reduct ion 

of s i l i c o n  t e t r a c h l o r i d e ,  a Process  Development Unit (PDU), which con- 

s i s t e d  of t h e  fou r  major u n i t s  of t he  process,  w a s  designed, i n s t a l l e d ,  

and experimentally operated.  

s i t i o n  took place i n  a f l u i d i z e d  bed r e a c t o r .  

experiments, improvements i n  the  design and ope ra t ion  of t hese  u n i t s  

were undertaken and t h e i r  experimental  l i m i t a t i o n s  &ere p a r t i a l l y  

e s t ab l i shed .  

The PDU w a s  s i zed  t o  50MT/Yr. The depo- 

A s  a consequence of t he  

A p a r a l l e l  program of experimental  work demonstrated that 

(1)  Zinc can be vaporized for  i n t roduc t ion  i n t o  the  

f l u i d i z e d  bed r e a c t o r ,  by d i r e c t  induction-coupled 

r . f .  energy. 
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(2) Residual z inc  i n  t h e  product,  expected t o  be of t h e  

order  of 100 ppm by weight, can be removed by hea t  

t reatment  below t h e  melt ing po in t  of s i l i c o n .  How- 
ever ,  de fe r r ing  the  zinc removal u n t i l  t he  s i l i c o n  i s  

melted i n  the  sheet-forming process  is shown t o  be an 

a t t r a c t i v e  opt ion.  

power e f f i c i e n c i e s  around 40 percent  are achievable  

i n  the  labora tory-sca le  e l e c t r o l y s i s  of ZnC12 

($50 d o  i n  KC1) .  

( 3 )  Current e f f i c i e n c i e s  of 94 percent  and above, and 

Independent work a t  Westinghouse has e s t ab l i shed  that photo- 

v o l t a i c  c e l l s  with 13 percent  e f f i c i e n c y  could be made with web dendr i t e s  

formed from t h e  product. 

Wxk with the PDU has  revealed no fundamental b a r r i e r s  t o  the  

commercialization of t he  fluidized-bed zinc-reduction process  f o r  s i l i c o n .  

However, successfu l  implem2ntation of the process  w i l l  depend on appropri-  

a t e  engineer ing so lu t ions  

program . 
problems remaining at the  end of the  PDU 
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SUMMARY 

The Battelle process  f o r  t he  production of low-cost high- 

p u r i t y  s i l i c o n  is  based on the zinc-vapor reduct ion  of s i l i c o n  tetra- 

ch lo r ide  i n  a f lu id i zed  bed of seed p a r t i c l e s  a t  about 925 C.* 

seed p a r t i c l e s  grow by the  deoos i t ion  of s i l i c o n  t o  y i e l d  a free-flow- 

ing  granular  product which is w e l l  adapted t o  continuous feeding 
i n  ingot- o r  sheet-growth processes.  

condensed and subjected t o  fused-sa l t  e l e c t r o l y s i s  t o  recover  the  

z inc  and ch lo r ine  fo r  recycle .  

The 

The by-product z inc  ch lo r ide  is 

Experimental s o l a r  cells ,  f ab r i ca t ed  by Westinghouse from web 

dendr i t e s  grown from the  Battelle product, exhib i ted  e f f i c i e n c i e s  of 

1 3  percent  (Air Mass A), correc ted  t o  include an a n t i r e f l e c t i v e  

layer .  Although use fu l  i n  i t  present  form, t h e  product is sub jec t  

t o  improvement by (1) i d e n t i f i c a t i o n  and removal of the  cause of some 

auto  doping de tec ted  i n  the  work by Westinghouse, and (2)  t he  elimina- 

t i o n  of some 100 ppmw of r e s i d u a l  z inc,  which does not  appear t o  a f f e c t  

the e l e c t r i c a l  p r o p e r t i e s  but  which con t r ibu te s  a small (e.g., 5 volume 

per cen t )  increase  i n  the  v o l a t i l e s  [mainly SiO(g)] from the  ingot- o r  

sheet-growth s t e p .  

Removal of most of t h e  r e s i d u a l  z inc  by hea t  t reatment  a t  

temperatures (e.g., 1050-1100 C) below the  melt ing poin t  of s i l i c o n  has  

been shown co be e f f e c t i v e .  However, the  amount of z inc is so small 

r e l a t i v e  t o  t h a t  of t he  S i 0  given off  i n  a t yp ica l  Czochralsni c r y s t a l  

growth, f o r  example, t h a t  one is a t t r a c t e d  t o  the  a l t e r n a t i v e  of L.elying 

on the automatic evolu t ion  t h a t  occurs  when the s i l i c o n  is melted i n  the  

ingot- or  sheet-growth process.  

B a t t e l l e  es t imates  of t he  s e l l i n g  p r i c e  (20% R.O.1) of s i l i c o n  

producei by the  process  a t  the  1000 MT/yr l e v e l  are as low as $14.80 

($ 1980) depending upon the  s ize  and m u l t i p l i c i t y  of f lu id i zed  

* Operation below ~ 9 1 5  C r e s u l t s  i n  condensation of z inc ,  and operat ion 
above 925 resul ts  i n  a decrease i n  r eac t inn  e f f i c i e n c y  by aboutO.l  per- 
cen t  pe r  degree from the  63 percent  re ference  e f f i c i e n c y  a t  925 C. 
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bed r e a c t o r s  and e l e c t r o l y t i c  ce l l s  assumed. Thus, t h e  economics of t h e  

process  f o r  a t  least one set of assumptions i s  i n  the  range of the  LSA 

t a r g e t  s e l l i n g  p r i c a  of $14/kg ($1980). 

The energy consumption (56.7 kwh/kg si) of t h e  production pro- 

cess is moderate, l ead ing  t o  a break-even po in t  a t  4.5 months' opera t ion  
f o r  a 10-percent-eff ic ient  s o l a r  ce l l ,  0.0254 c m  i n  th ickness  wi th  a P i l i c o n  

u t i l i z a t i o n  e f f i c i e n c y  of 50 percent .  

I n  t h e  l i g h t  of t h e  above information,  it is probable that the  

Battelle process  can meet the  LSA p r o j e c t  goa l s  with r e spec t  t o  product 

q u a l i t y  and p r i ce .  

engineer ing cha l lenges  t h a t  must be resolved before  i t  becomes a r o u t i n e  

operat ion.  The major problems stem from having t o  handle t h e  co r ros ive  

and condensible materials, z inc ,  and z inc  ch lo r ide  a t  high temperatures.  

However. many a s p e c t s  of t he  process  present  d i f f i c u l t  

Many of t he  problems a s soc ia t ed  wi th  the  process  were solved 

dur ing  work wi th  t h e  Process  Development Unit (PDU) i n  Phase 111 of t h e  

Battelle program, reported here .  Howzver, opera t ion  of t he  PDU revealed 

l i m i t a t i o n s  i n  t h e  cu r ren t  design of t he  fluidized-bed r e a c t o r  which i n  

t u r n  prevented a f u l l  eva lua t ion  of t h e  o the r  c r i t i c a l  u n i t s  of t he  pro- 

cess, whose design the  PDU was intended t o  v a l i d a t e .  

Appropriate s e a l i n g  of the  g raph i t e  l i n e r  of t h e  fluidized-bed 

r e a c t o r  i n  i t s  s t a i n l e s s  s tee l  s h e l l  and purging of t h e  annulus were 
provided t o  prevent access  of z inc and zinc ch lo r ide  t o  the  s t a i n l e s s  

steel. Further ,  appropr ia te  precaut ions were taken t o  provide f o r  t h e  

l a r g e  p red ic t ab le  thermal expansion d i f f e r e n t i a l  between t h e  g raph i t e  and 

the  s t a i n l e s s  s tee l .  However, unpredic tab le  movements of t he  s h e l l  r e l a -  

t i v e  t o  the  l i n e r  ( r e l axa t ion  of r e s i d u a l  stress?) led  t o  the  f requent  break- 

age of appendages, and unexpected downstream c o n s t r i c t i o n  of t h e  sys tem 

with r eac t ion  by-products led  t o  d i s r u p t i o n  of t h e  purge streams, with 

the  r e su l t  t h a t  on a f e w  occasions zinc and zinc ch lo r ide  en tered  t h e  

annulus This led t o  cor ros ion  and penet ra t ion  of t he  t h i n  s t a i n l e s s  

s teel  bellows t h a t  were used t o  accommodate t h e  ax ia l  displacement due 

t o  thermal expansion d i f f e r e n t i a l .  Since both zinc and z inc  ch lo r ide  

a r e  v o l a t i l e  condensibles ,  t h e i r  presence is p e r s i s t e n t ,  and once having 

in t ruded ,  they a r e  d i f f i c u l t  t o  con t ro l  or remove. Accordingly, whereas 
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i d e a l l y  a r e a c t o r  c o n s i s t i n g  of a s t a i n l e s s  s t ee l  s h e l l  and g raph i t e  l i n e r  

might eventual ly  be made t o  work, i t  is now judged more d i f f i c u l t  than 

i n i t i a l l y  thought. 

Unfortunately,  t he  range of materials compatible with the  

r eac t ion  mixture a t  925 C is l imi t ed ,  g raph i t e  and q u a r t z  being the  

p r i n c i p l e  contenders.  Since qua r t z  is  compatible with a i r ,  a l i ned  v e s s e l  

is not  requirzd thus  s implifying c o n s t r - c t i o n .  Accordingly i t  is recommend- 

ed t h a t  i n  work with the  process i n  t h e  immediate f u t u r e ,  a t t e n t i o n  be 

given t o  the design and use of a qua r t z  r e a c t o r ,  d e s p i t e  i t s  long-range 

s i z e  l i m i t a t i o n s .  

One ,nfor tunate  r e s u l t  of the  c u r t a i l e d  operat ion of the  PDU 

was tha t  the  by-product condenser was not f u l l y  evalhated.  Proper con- 

depsat ion and sepa ra t ion  of the  by-prodwt zinc c h l o r i d e  and unreacted 

zinc from the  unreacted s i l i c o n  t e t r a c h l o r i d e  is a c r i t i c a l  operat ion.  

If t he  by-product mixture i s  cooled too o ~ o w l y ,  the  s i l i c o n  t e t r a c h l o r i d e  

w i l l  r e a c t  with l i q u i d  zinc t o  give s i l i c o i i  needles  which can c o n s t r i c t  

the  s y s t e m  downstream. 

r ap id ly ,  i i n c  ch lo r ide  ( t h e  major component) and zinc can fog ou t  and be 

c a r r i e d  downstrean by entrainment,  again t o  c o n s t r i c t  the  system. Although 

most of the  downstream c o n s t r i c t i o n s  observed i n  the PDU operat ion can be 

a t t r i b u t e d  t o  o the r  factors*,  the e f f i c i s r  : of operat ion of the  condensel. 

( including the  r e c i r c u l a t i o n  of l i q u i d  zinc ch lo r ide  t o  wet the  condenser 

surf, 2) was not f u l l y  evaluated.  Accordingly, subsequent worh with the  

process should include c h a r a c t e r i z a t i o n  of the  condenser o p e r a t i o n .  If the  

present  condenser cannot be shown t o  have an ope ra t iona l  "window" between 

s icon needle formation on the one hand and zinc ch lo r ide  foP;rzinPc on the  

o t h e r ,  quenching of t he  bv-prodact mixture with r e c i r c u l a t e d  s i l i c o n  

t e t r a c h l o r i d e  i s  a poss ib l e  a l t e r n a t i v e ,  with o r o v i s i m  beinR made f o r  

s epa ra t ing  the  comonente  of t he  r e s u l t a n t  s l u r r y .  

If on t h e  o the r  hand t h t  by-product i s  cooled too  

Although progress  was made i n  ensuring the  o p e r a b i l i t y  i n  the 

PDU o f  a graphi te- t ray "f lash" vaporizer  fed witb metered l i q u i d  z inc ,  

--____1_- _ _ _ _ ~  
* Liquid S i c 1 4  reaching the sparger tube i n  the waste disposal  system 

( s ince  co r rec t ed j .  d e f i c i e n t  s t r ipper  design and operat ion ( p a r t i a l l y  
co r rec t ed ) ,  e t c  . 
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a zinc vaporizer  energized by d i r e c t  induction-coupled r . f .  would appear 

t o  be p re fe rab le  because of t h e  quick response of vapor output  t o  c o n t r o l  

s ignal .  The use of a s a t u r a b l e  core  r e a c t o r  t o  c o n t r o l  the r.f. output  

i n  the  induction hea te r  i n  place of e l e c t r o n i c  c o n t r o l  was found t o  

e l imina te  a high vol tage t r a n s i e n t  i n  the  wave form and avoid t h e  forma- 

t i o n  of the  parasitic plasma i n  t h e  zinc vapor t h a t  was observed io e a r l y  

at tempts  t o  operate  the  PDU wi th  a direct-coupled vaporizer .  

Although operat ion of t h e  6000-amp e l e z t r o l y t i c  ce l l  w a s  no t  

evaluated owing t o  an in su f f i c i ency  of by-product z inc  c h l o r i d e  (contain- 

ing z inc  and s i l i c o n  in suspension),  i t  i s  b e l i w d  i n  the  l j q h t  of 

experience wi th  a s i m i l a r  ce l l  as the  U.S. Bureau of Mines, Reno, Nevada, 

that operat ion of t h e  e l e c t r o l y t i c  c e l l  should be one of rhe least 

troublesome aspec t s  of t h e  process. 

(and over),  and power e f f i c i e n c i e s  around 40 percent  w e r e  demonstrated 

f o r  a small (50-amp) l abora to ry  cel l  i n  l abora to ry  experimental  work 

concurrent with PDU operat ion.  

In  summary, although the operat ion of t h e  PDU d id  not reach 

Current e f f i c i e n c i e s  of 94 percent  

the point  of being s u f f i c i e n t l y  r o u t i n e  t o  ob ta in  the des i r ed  engineer ing 

da ta ,  s i g n i f i c a n t  improvements i n  t h e  process were made i n  Phase 111 and 

nothing was revc.led t h a t  would preclude t h e  competit iveness of an 

appropriately engineered f a c i l i t y  f o r  t h e  production of low-cost high- 

pu r i ty  s i l i c o n  f o r  s o l a r  c e l l  use. 
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INTRODUCTION 

This  f i n a l  r e p o r t  covers  Phase 111 of a program a t  Eattelle 

Columbus Laborator ies  (BCL) designed t o  e v a l u a t e  the  t echn ica l  and economic 

f e a s i b i l i t y  of the  z inc  vapor reduct ion of s i l i c o n  t e t r a c h l o r i d e  i n  a f l u i -  

dized bed of s i l i c o n  seed p a r t i c l e s  as a means of producing high-purity 

s i l i c o n  g ranu les  a t  low c o s t  for use i n  s o l a r  a r r a y s  f o r  power generat ion.  

The BCL program w a s  p a r t  of t he  Lou Cost Solar  A r r a y  P r o j e c t  (LSA) managed 

by the  Jet Propulsion Laboratory (JPL) f c r  the  Department of Energy (DOE). 
The reader  is r e f e r r e d  t o  the  F i n a l  Report f o r  Phases I and I I (1 )  

i n  which t h e  background is given on ( 1 )  t he  choice of t he  z inc  reduct ion 

process from among s e v e r a l  a l t e r n a t i v e  processes,  (2) demonstration i n  t h e  

"Miniplant" on a l abo ra to ry  scale of t he  t e c h n i c a l  f e a s i b i l i t y  of t h e  pro- 

cess, (3) a n a l y s i s  of t h e  process  c o s t s ,  and (4) des ign  of a 50-metric-ton- 

per-vear experjmental  f a c i l i t y  (EPSDU*). 

The present  r e p o r t  covers  refinements i n  the  design of t he  EPSDU, 

2nd refinements i n  the  economic analyses .  Also covered a r e  the  work with a 

Process Development Un i t  (PDU) and va r ious  items of experimental  work c a r r i e d  

out  i n  support  of the  PDU a c t i v i t y  but independent of t he  ope ra t ion  of t h e  

PDU i t s e l f .  The program involving the  PDL; w a s  adopted a s  a means of assess- 

ing t h e  o p e r a b i l i t y ,  on an 8-hour batch b a s i s ,  of fou r  c r i t i c a l  u n i t s  of t he  

50 MTfyear EPSDU design: t he  fluidizzd-bed r e a c t o r ,  t he  z i n c l z i n c  ch lo r ide  

by-product condenser, the  zinc vaporizer ,  and the  c e l l  f o r  fused-sal t  elec- 

i r o l y s i s  of the  z inc  c h l o r i d e  and r ecyc le  of t he  z inc  and ch lo r ine .  

* EPSDU i s  an acronym for  "Experimental Process System Development Fac i l i t y" .  
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The design of t h e  50 MT/year EPSDU w a s  c a r r i e d  o u t  under a 
subcontract  by Raphael Katzen Assoc ia t e s  I n t e r n a t i o n a l ,  Inc., (RKAII) a t  

Cincinnat i ,  Ohio wi th  the  cooperat ion of BCL personnel.  Details of that 

design as  i t  stood a t  the  c l o s e  of Phase I1 of t h e  program are given i n  
the  Tenth Quarter ly  Report(2) and the  F i n a l  Report f o r  Phases I and I I ( l ) .  

Only changes from the  design i n  the  F i n a l  Report are discussed here.  

major a l t e r a t i o n s ,  made f o r  purposes of economy o r  process  s i m p l i f i c a t i o n s  

are: 

The 

(1) Redesign of t h e  ZnC12/Zn by-product system t o  

ope ra t e  a t  350 C r a t h e r  than 500 C ( z inc  

handled as  a s l u r r y  of f i n e  s o l i d  p a r t i c l e s  

suspended i n  the  ZnC12, r a t h e r  than as a 

l i q u i d ) .  

2 
(2)  El iminat ion of t w o  of t h e  o r i g i n a l  f o u r  ZnCl 

s t r i p p e r s .  

(3) Redesign of t he  e l e c t r o d e s  of t he  c e l l  f o r  

e l e c t r o l y z i n g  ZnC12. 

(4 )  Refinement of the  design of :he w d s t e -  

d i s p o s a l  system. 

These changes, as r e f l e c t e d  i n  the  corresponding process  flow dia-  

grams, Figures  l through 3, are discussed i n  d e t a i l  i n  t he  Eleventh-Twelfth 

Q u a r t e r l y  Report(3) and w i l l  not be discussed f u r t h e r  here ,  except a s  they 

relate t o  the  PDU design which is covered i n  a la ter  s e c t i o n  of t h i s  r epor t .  

Because of t h e  complexity of the  EPSDU design,  f u l l  d e t a i l s  are,  of course,  

obtainable  only by r e fe rence  t o  the  o r i g i n a l  design documents(4). 

A s  p a r t  of t he  design a c t i v i t y ,  two models of t he  EPSDU have been 

made, one p r imar i ly  f o r  d i s p l a y  purposes, c o n s i s t i n g  of oiily the  Reactor/ 

Recotery s e c t i o n  of the  f a c i l i t y  [Figures 6 and 7 of t he  EleventhITwelfth 

Q u a r t e r l y  and t h e  o t h e r ,  a 1/16 s c a l e  model of t he  e n t i r e  f a c i l i t y ,  

constructed t o  (1) f a c i l i t a t e  t he  layout and piping phases of t he  design,  ( 2 )  

a i d  cons t ruc t ion  c o n t r a c t o r s  i n  c o s t  e s t ima t ion ,  and (3) s e rve  as  a reference 

during cons t ruc t ion .  Figures 4 through 7 show four  views of t he  l a t t e r  model. 
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With t h i s  design as a b a s i s ,  d e t a i l e d  estimates were made of t he  

cos t  of i n s t a l l i n g  the  EPSDU i n  an e x i s t i n g  bui ld ing  a t  Battelle Columbus 
Laborator ies .  

w e l l  as by an  independent process  design group a t  BCL, ranged from $1.5 t o  

$1.6 mi l l ion ,  as discussed i n  g rea t e r  d e t a i l  i n  the  E leven thhwe l f th  Quar- 

t e r l y  Report(3).  

Estimates made by RKAII i n  cooperat ion with BCL s t a f f ,  a s  

Although the  dec is ion  was made t o  adopt the  PDU prograrn in s t ead  

of cons t ruc t ing  the  EPSDU immediately, t he  EPSDU design remains v a l i d  as a 
b a s i s  for  f u t u r e  scale-up, sub jec t ,  of course,  t o  modif icat ions as indica ted  

by the  PDU experience descr ibed i n  t h i s  r e p o r t .  

16 
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ECONOMIC ANALYSIS OF SILICON PRODUCTION AT THE 
1000 MT/’YEAR LEVEL 

Toward the  end of t he  program covered i n  the  Phase 1/11 F ina l  

Report(l1,  an update of dr. e a r l i e r  1000 MT/year economic a n a l y s i s  was made 

based on the  50 MT/year EPSDU design then c u r r e n t .  

been made i n  t he  EPSDU design i n  the  e a r l y  par t  of Phase 111, i t  i s  bel ieved 

t h a t  the  e f f e c t  on the  economic a n a l y s i s  would not  be s u f f i c i e n t  t o  wcrrant 

r e c a l c u l a t i o n  of the  estimates. Accordingly, t h i s  has  not  been done. 

Although changes have 

I t  is of i n t e r e s t  here,  however, t o  b r ing  those f i g u r e s  up t o  d a t e  

i n  terms of using 1980 d o l l a r s  i n  place of 1975 d o l l a r s ,  a m  providing fo r  

r e t u r n  on investment, which was not  done i n  the  earlier c a l c u l a t i o n s .  I n  

accomplishing t h i s  update, t he  1975-based f i g u r e s  a r e  mul t ip l i ed  by the  i n f l a -  

t i o n  f a c t o r  1.4.  Further ,  t he  s e l l i n g  Tr i ce  of the  product on the b a s i s  of 

r e t u r n  on inves t zen t  (R.O.I.) i s  c a l c u l a t e d  by the  formula: 

1.15 FR 
1-T P = C +  

where P = s e l l i n g  p r i ce ,  $/kg 

C = product c o s t  without p r o f i t ,  $/kg 

F = fixed c a p i t a l  investment, $/kg 

R = r e tu rn  on investment, % / l o 0  

T = t ax  rate,  % / l o 0  

1.15 = f a c t o r  allowing f o r  working c a p i t a l  = 15% of f ixed c a p i t a l  

Table 1 g ives  the  projected s e l l i n g  p r i c e  as a funct ion of R O I  f o r  

s i l i c o n  produced by the  z inc  reduct ion process  i n  accordance with the  op t ions  

s tudied ear l ier .  

A s  shown i n  Table 1, both Cases I1 and 111 meet a product c o s t  goal  

of <$14/kg (1980 d o l l a r s ) .  However, t o  achieve a reasonable r e tu rn  on invest-  

ment r e q u i r e s  a mark-up o f ,  e.g., approximately 56 percent f o r  a 20 percent 

R . O . I . ,  so tha t  a correspondingly lower product c o s t  is necessary t o  reach a 

s e l l i n g  p r i c e  goal of <$14/kg (1980 d o l l a r s ) .  
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ENERGY PAI-BACK 

A s  recorded i n  the  Phase 1/11 Fins1 Repor t ( l ) ,  s o l a r  photovol ta ic  

c e l l s  of 10 percent e f f i c i e n c y  would r e q u i r e  an elapsed t i m e  (night and day) 

of 5.9 months t o  r ep lace  the  energy consumed i n  the  production of t h e  

s i l i c o n  by the  z inc  r educ t i c  1 process.  

projected use of metallurgical-grade s i l i c o n  f o r  che production of s i l i c o n  

t e t r a c h l o r i d e .  However, s e v e r a l  advantages of using s i l i c o n  carbide i n  place 

cf metallurgical-grade s i l i c o n  have come t o  l i g h t ,  not the  least  of which i s  

a considerable  saving i n  energy consump,ion. 

That calcu!:-tion was based on the  

Most of t he  d i r e c t *  producers of s i l i c o n  t e t r a c h l o r i d e  use s i l i c o n  

carbide as a s i l i c o n  source because of a cos t  advantage over t h e  use of metal- 

lurgical-grade s i l i c o n  and because the  r e a c t i o n  with ch lo r ine  i s  less exo- 

thermic. 

dccordingly. 

c o n s i s t e n t  with the  p r i o r  c o s t  c a l c u l a t i o n s  which were based or a s e l l i n g  p r i c e  

of s i l i c o n  t e t r a c h l o r i d e  produced from s i l i c o n  carbide.  

Thus i t  is  probable t h a t  a 1000 MT/year p l an t  would .,e designed 

The use of s i l i c o n  ca rb ide  i n  the  energy c a l c u l a t i o n s  i s  a l s o  more 

In  making the revised energy u s e  c a l c u l a t i o n s ,  an a d d i t i o n a l  amo3nt 

of power, l a r g e l y  due t o  r e f r i g e r a t i o n  c o s t s ,  is added f o r  t h e  manufacture of 

s i l i c o n  t e t r a c h l c r i d e .  

From Table 27  of the  Phase 1/11 F ina l  Repor t ( l ) ,  we note  tha t  t h e  

process  r e q u i r e s  15.68 l b  of SIC14 per kg of s i l i c o n .  A t  0.30 kWh/lb of 

SiC14**,that amounts t o  4.70 kWh/kg S i .  

duction of s i l i c o n  carbide (87  percent SIC***) i s  2.5 kWh/lbk***. Thus i f  t he  

SIC is converted t o  SIC14 a t  a u t i l i z a t i o n  e f f i c i e n c y  of 95 percent ,  t h e  

energy required due t o  the SIC is  

The energy requirement f o r  the p rn -  

40.09 wt X (15.68 t 0.95) = 11.2 km/kg S i ,  (*05 ’ Oaa7) 169.93 (mol w t  SiC14) 

* Much SiC14 is a byproddct of o the r  operat ions.  

** Estimate from producLf of SiC14; i d e n t i t y  withheld.  

*** Some of the  S i 0  + C i n  the  13 percent  non-Sic content  of t he  s i l i c o n  2 carbide product w i l l  c h l o r i n a t e .  However, t he  conservat ive p o s i t i o n  of 
neg lec t ing  t h i s  i s  taken hore. 

**** Estimate from producer of S I C ;  i d e n t i t y  withheld.  
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Table 2 presents  a r ev i s ion  of Table 31 of t h e  Phase 1/11 Final Qeport(l)  

t o  account f o r  t h e  use of S i c ,  r a t h e r  than ae t a l lu rg ica l -g rade  s i l i con ,  i n  t h e  

production of SiC14. 

consumption i n  t h e  SiC14 product ion s t e p .  

based on t h e  use of S i c  f o r  t h e  prepara t ion  of t h e  SIC14 compares wi th  71.27 

kWh/kg S i  obtained earlier with metal lurgical-grade s i l icon as t h e  s t a r t i n g  
material. The saving i s  due mainly t o  the  high energy u t i l i z a t i o n  e f f i c i e n c y  

of t h e  Acheson furnace f o r  s i l i c o n  ca rb ide  product ion r e l a t i v e  t o  t h a t  of t h e  

a r c  furnace used t o  produce metallurgical-grade s i l i c o n .  

In  add i t ion ,  i t  accounts for a more realistic ensrgy 

The to ta l  of 56.72 kWh/kg Si 

io c a l c u l a t e  t h e  t i m e  necessary t o  pay back t h e  energy consumed i n  t h e  

manufacture of t h e  s i l i c o n ,  one can assume a s o l a r  c e l l  0.0254 cm i n  th ickness  

generat ing a peak power of 100 w a t t s  per  square meter. 3n an area where t h e  

average power is 20 percent  of t he  peak pouer and with an assumption of 50 

percent  loss of s i l i c o n  i n  the  c e l l  manufacture, t he  average power output  per  

kg of s i l i c o n  produced by the  process  is  

loo IC Oo20 IC O m 5 0  

0.0254 x 1002 x 2.3 
= 0.0171 wa t t s /g  o r  0.017 kW/kg, 

... ere 2.3 g cm-3 is t h e  dens i ty  of s i l i c o n .  On t h i s  biisis. 56.72/0.0171 = 

3314 hours,  o r  4.5 monrhs, would be required for t h e  energy pay-back. 



TABLE 2.  ENERGY REQUIREMENTS. kwh/kg S i .  

I tern Basis 

Energy Requirement 
kwh/kg Si 

This Reference 
Report (1) 

Process , with Except ion Table 28, 
of Sic14 Froduction Reference 1 

36.46 36.46 

Sic14 Production See Text 4.70 --- 
Make-up C12 2.04 lb/kg S i  @ 1.54 kWh/lb(a) ---('I -__ (b 1 

NaOH to Neu t ra 1 i ze 2.4 lb/kg Si $ 1.37 kWh/lb(a) 3.29 3.29 
Waste Sic14 97 Percent Utilization 

Make-up Zinc 0.54 lb/kg Si la 2 kWh/lb(C) 1.08 1.08 

Silicon Carbide See Text 11.19 - -- 
Me t a 1 1 ti r g i c a 1 -Grad e 1.27 lb/kg S i  @ 24 kWh/kg --- 30.44. 

-- Silicon 95 Percent Utilization 

TOTAL 56.72 71.27 

( h )  Co-produc t of NaOH produc t ion. 

( c )  Conservative estimate of 2 kwh/lb Zn adopted on basis of 1.6 kWh/lb 
projected by U. S. Bureau of ?lines, Reno, Nevada(6). 
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PROCESS DEVELOPMENT UNIT (PDU) 

As noted in the Introduction to this report, a decision was made 
not to proceed immediately with construction of the EPSDU, but to determine 
the operability of the four most critical units of that design on the basis 

of an 8-hour batch operation. This required the construction of those units 
and assembling the items of auxillary equipmc?t that were necessary for such 

an operation. The overall experimental facility was termed the Process 

Development Unit ( P D U ) .  

This facility included a 7-inch-diameter fluidized bed of 25 MT/year 

capacity*, a Zn/ZnCl by-product condenser of the same capacity, and a 6,000- 2 
amp electrolytic cell for recovery of zinc and chloriqe values from the by- 
product zinc chloride. The electrolytic cell is one of six in the EFSDU 

design. A suitable holding tank was provided to accommodate the by-product 

and to permit operation of the electrolytic cell and fluidized bed indepen- 

dently. The other critical unit of the EPSDU incorporated in the PDU was 

the zinc vaporizer, characterized by direct inductive coupling to the zinc 

in a vaporizer of minimal thermal capacity to avoid hysteresis in the rate 
0: generation of zinc vapor. 

Figure 8 (a-c) is a schematic diagram of the PDU, showing the critical 

units mentioned above and the auxiliary equipment. 

Figure 9 shows a general view of the PDU. Tlie operator is kneeling 
at the top of the fluidized-bed reactor furnace. Behind and to his left, 

extending to the ceiling, is the ZnfZnC12 by-product condenser. 
vaporizer is seen to the left of the reactor furnace at floor level, and part 

of the electrolytic cell extends to the right of the frame at floor level. 
The cable tray, making a 90-degree bend in the lower foreground, carries the con- 

nections from instrumentation t o  the control panel. 

The Sic14 

Figure 10 is a schematic diagram of 'he fluidized-bed reactor from 
the EPSIIU design. For use in the PDU, the seed inlet was omitted, since it 

was unnecessary to add seed during the eight hours of operation. Chareing of 

* One of the two 25-MTfyear reactors of  the 5C-MTlyear EPSDU design. 
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FIGURE 8 ADDENDUM 

1. 

2. 

3. 

4. 

5. 
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6. 

7.  

8 .  

9. 

10. 

11. 

12. 

13. 

14. 

NOMINAL PDU PROCESS STREAH COXPOSITION AND RAmS 

Argon, cumulative 

C12(g), 1.5 lb/hr (average of intermittent use*) 

SiClq(g), 80.0 lb/hr 

Sic14 ( e ) ,  80.0 lb/hr 

ZnC12(e), (80.9-x)lb/hr** 
ZnC12(s), x lb/hr 
SiC14(g), 29.6 lb/hr 

ZnC12 ( 0 )  , 2.4 gal/min 

SiClq(g), 29.6 lb/hr 
Ar(g), 10.9 scfh 

Zn(s), 22.8 lb/hr 
Si(s), 0.16 lb/hr 
Ar(g), 10.9 s c f h  

SiC14(g), 1.4 lb/hr (average of intermittent use) 
C12(g), 0.3 lb/hr (average of intermittent use) 

C12(g), 41.3 lb/hr (average of intermittent use) 
SiCl~,(g), 1.0 lb/hr (average of intermittent use 

SiClq(g), 32.0 lb/hr (average of intermittent use) 
C12(g), 41.3 lb/hr (average of intermittent use) 
Ar(g), 13.9 scfh (average of intermittent use) 

Zn(c), 61.6 lb/hr 

ZnCl?(e), 80.9 lb/hr (average of intermittent use) 
Zn(s), 22.8 Ib/tr \average of intermittent use) 
Si(s), 0.16 lk/hr (average of intermittent use) 

Therminol coolant, li gpm 

Silicon product, 7.9 lb/hr + seed content 

* Averaged over time of operation of fluidized bed; actual 
K x recorded rate, where 

operating time of fluidized bed 
operating time of chlorination or electrolysis K =  

** x = small mount (e.g., ;1 percent) of uncondensed ZnC12 

rate = 
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the  s t a r t i n g  bed t o  the  r eac to r  w a s  done through the  s i g h t  po r t ,  which 

resumed i t s  normal func t ion  during operat ion.  

The r e a c t o r  i t s e l f  was cons t ruc ted  of Stackpole 2020* graph i t e  and 

was sea led  on the  ou t s ide  x i t h  UCAR-14 r e s i n  (UCC). 

the  in s ide  of t he  r eac to r  w a s  coated** with s i l i c o n / s i l i c o n  carbide*** by 

thermal decomposition of t r i c h l o r o s i l a n e ,  about 10 percent  i n  argon, i n t ro -  

duced through alternate i n l e t s .  

(700-750 C) so t h a t  the  f r a c t i o n  of t r i c h l o r o s i l a n e  t h a t  reacted was l imi ted  

t o  <5 percent .  In  t h i s  way, the coa t ing  r eac t ion  was spread over t he  e n t i r e  

inner  sur face  of t h e  reac tor .  Test coupons of g raph i t e  placed s t r a t e g i c a l l y  

i n  the  r eac to r  received continuous' coa t ings  or s i l i c o n ,  ranging from l / v m  t o  

4/vm thickness ,  depending on loca t ion .  

t o  minimize the  permeabi l i ty  of t he  g raph i t e  t o  z inc and zinc ch lo r ide  vapors  

which are d e l e t e r i o u s  t o  the  s t a i n l e s s  steel r e a c t o r  s h e l l ,  and (2 )  t o  mini- 

mize t r anspor t  of impur i t ies  from the  r eac to r  t o  the  r eac t ion  zone. 

Af te r  t h e  r e s i n  w a s  cured, 

The temperature was purposely kept low 

The purpose of t he  coa t ings  was (1) 

The zinc vaporizer  design f i r s t  used, and i n  p r i n c i p a l  the  prefer red  
design,  is shown i n  Figure 11. 

because the  technology is not a v a i l a b l e  f o r  c o n t r o l l i n g  and monitoring the  

flow of z inc vapor a t  atmospheric pressure  and a l i t t l e  above a t  the  required 

temperatures of 908 t o  920 C. 

The direct-coupled vaporizer  design w a s  adopted 

Because of tile high hea t  of vapor iza t ion  of z inc ,  (27 .6  kcal/mole, 

as cont ras ted  with water. 9 . 8 ) .  i t  should be poss ib l e  t o  con t ro l  the r a t e  of 

z inc vapor feed t o  the  r eac to r  by t h e  power input  t o  the  vapor izer .  T h i s  is 

best  done with a minimum of h y s t e r e s i s  i n  the  cont ro l  by minimizing t h e  thermal 

capac i ty  of the vaporizer ,  i .e.,  by coupling electromagnet ic  energy d i r e c t l y  

t o  the  zinc.  

inventory In  the vapor izer  by the  coupling c h a r a c t e r i s t i c s .  

I t  should a l s o  be poss ib le  i n  p r i n c i p a l  t o  monitor the  z inc  

* Stackpole Carbon Co. 

** Including the  i n t e r n a l  sur face  of t h e  sic14 preheater  and the i n l e t s  
and o u t l e t s .  

*** The SIC would be l imi ted  t o  a s u p e r f i c i a l  reac t ion  layer  a t  the i n t e r f a c e .  

i Except a t  deep pores.  
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Because of a r c i n g  p;oblems related to  t h e  wave form of t h e  par- 

t i c u l a r  e lectromagnet ic  generator  t h a t  was a v a i l a b l e  f o r  t h i s  work, an alter-  

n a t i v e  vapor izer  had t o  be s u b s t i t u t e d ,  as descr ibed i n  che sec t ion  of t h i s  

r e p o r t  dea l ing  with PDU experience.  

The Zn/ZnC12 condenser of t h e  PDU is shown as two c r o s s  s e c t i o n s  

a t  r i g h t  angles  i n  Figure 12. 

z inc  and s i l i c o n  t e t r a c h l o r i d e  p lus  by-product z inc  ch lo r ide  and the  argon 

"breather" gas  e n t e r  from t h e  bottom l e f t  of t h e  lef t -hand cross-sec t ion  view. 

The pass  p a r t i t i o n ,  extending below t h e  l i q u i d  ZnC12 l e v e l  a t  the  bottom, 

d i r e c t s  t he  vapors  up t h e  open tubes  on the  l e f t  (only one of t h r e e  p a r a l l e l  

tubes is shown) and then down on the  r i g h t .  

a f i l m  of r e c i r c u l a t e d  ZnC12, which is  pumped t o  a d i s t r i b u t o r / o v e r f l o u  s e c t i o n  

a t  the  top of t he  condenser tlirouRh t h e  p a r a l l e l  tubes  shown i n  the  r i g h t  

c r o s s  sec t ion .  The purposes of t h e  wetted w a l l  a t  350 C are t o  improve the  con- 
densat ion of t he  z inc  c h l o r i d e ,  t o p e n n i t  t h e  cmdensa t ion  of z inc as a f i n e  

p a r t i c u l a t e  s o l i d ,  and t o  c o l l e c t  en t ra ined  f i n e l y  d iv ided  s i l i c o n  f o r  t rans-  

po r t  t o  t he  e l e c t r o l y t i c  ce l l  where i t  is  chlor ina ted .  

Vapors from t h e  r e a c t o r  conta in ing  unreacted 

These channels  are wetted wi th  

The by-product condenser shown i n  Figure 12 d i f f e r s  from t h a t  shown 

as Figure 24 i n  the  Phase 1/11 Fina l  Report(1) by the  e l imina t ion  of t he  f low 

of Therminol heat-exchange f l u i d  wi th in  the  g raph i t e  block and t h e  subs t i t u -  

t i o n  of flow through a p l a t e -co i l  j acke t  on the  ou t s ide  s t a i n l e s s  steel wa l l  

and a bayonet cooler  extending as a well  i n t o  t h e  c e n t e r  of t h e  condenser. 

Although t h e  hea t  t r a n s f e r  is not  a s  good as i n  t h e  o r i g i n a l  design,  i t  was 
thought t o  be adequate,  and t h e  cons t ruc t ion  of t h e  condenser is g r e a t l y  s i m -  

p l i f i e d .  Further ,  t he  p o t e n t i a l  f o r  leakage of t h e  Therininol heat-exchange 

f l u i d  i n t o  the  process  stream is g r e a t l y  reduced. 

The e l e c t r o l y t i c  c e l l  of t h e  PDU shown i n  Figure 13 is one of t h e  

s i x  6000-amp ce l l s  of t he  50 MT/year EPSDU design.  

opera t ion  of the  25 MT/year-equivalent r eac to r  of t he  PDU r equ i r e s  24 hours 

opera t ion  of the e l e c t r o l y t i c  c e l l  t o  handle the  zinc ch lo r ide  by-product. 

The e l e c t r o l y t i c  c e l l  is pat te rned  af ter  those  being developed a t  t he  U. S. 

Bureau of Mines a t  Reno, Nevada(7)~  (8) f o r  t he  e l e c t r o l y s i s  of z inc ch lor ide .  

Accordingly, 8-hour 

The e l e c t r o l y t e  i s  a 

being f o r  the  purpose 

vapor pressure  of t h e  

50/5C m/o mixture of KC1 and ZnC12, t he  K C 1  add i t ion  

of increas ing  the  c e l l  conduct iv i ty  and decreas ing  the  

ZnCl2(g) over the  e l e c t r o l y t e ( 7 ) .  The K C l  is r e t a ined  
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i n  the  c e l l ,  which v i t h  per iodic  add i t ions  of ZnC12 (+ Zn) from t h e  s to rage  

tank is operated !n the  rang? from U 5  mlo t o  $5 m/o ZnC12. A s i g n i f i c a n t  

d i f f e rence  between the  BCL and USBN ce l l s  is that, whereas t h e  zinc product 

is withdrawn from the  latter by means of a3 evacuated d i p  tube, t he  BCL c e l l  

provides f o r  discharge of z inc by overflow through a siphon on the  s i d e  w a l l  

The ZnCl2 l e v e l  i n  the c e l l  is mocitored between l i m i t s  by c? l e v e l  probe 

extending from the c e i l i n g  of t he  cell .  

head of t he  ZnC12 (dens i ty  = 2.5 gem-3) t l o a t i n g  on the  zinc (dens i ty  = 6 

gcm-3) u i t h i n  the  ce l l  balances the  head of z inc i n  t h e  overflow. 

s t a n t  head (h,) of zinc in the overflow, the  zinc level i n  t h e  cell (he) is 
d i r e c t l y  determined by the  ZnCl2 l e v e l  (b) as: 

I n  normal opera t ion  the  hydros t a t i c  

A t  a c m -  

If t he  l e v e l  of ZnC12 i s  maintained by per iodic  add i t ion  of ZnC12, t he  zinc 

l e v e l  i n s ide  the  c e l l  is  xa in ta ined  by overfloc: of z inc as it  is generated 

by e l e c t r o l y s i s  of the  ZnC12. 

In  add i t ion  t o  The four  c r i t i c a l  u n i t s  of the PDU discussed above, 

s eve ra l  items of a u x i l l i a r y  equipnent are shown i n  Figure 8 ,  which are essev- 

t i a l  t o  the 8-hour Latch opera t ion  of the  PDU. These include: 

(1) Sic14 supply tank, s t a i n l e s s  steel, 55-ga1, 

689 Ib, 8 .6  h r  supply a t  nominal (Figure 8 )  rate. 

(2) C12 supply, f o r  i n t e r m i t t e n t  ch lo r ina t ion  

of s i l i c o n  deposi ted on walls of r eac to r .  

(3 ,  Argon cipply,  160 II of l i q u i d  argon as  

purgc!breather gas. 

(4 )  S i l i c o n  product s torage  hopper, s t a i n l e s s  

steel, capac i ty  7 ga l ,  t o r  use i n  withriraw- 

ing the  product and s t a r t h g  bed from the  

r eac to r ,  i . e . ,  t o  confirm the concept of 

per iodic  product withdrawal. 

( 5 )  ZnC12 s torage  tank, s t a i n l e s s  steel ,  55 g a l ,  

€or  in te r im s torage  of by-product conta in ing  

main ly  ZnC12 p l u s  unreacted Zn and en t ra ined  

f i n e l y  divided s i l i c c n .  
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(6) A zinc storage tank, graphite lined, capacity 
10 gal - 550 lb of zinc. 

Ingot molds for casting the zinc produced by 

the electrolytic cell. 

A ZnCl2 stripper consisting of a water-cooled 

vertical finned tube to remove 2nC12 that escapes 

the Zn/ZnC12 by-produc 
vent plugging of the downstream lines (stripper 
heated periodically to melt down condensate). 

(7 )  

(8) 

condenser, so as to pre- 

(9) Neutralization tanks, stainless steel, 55 gal, 

for use in neutralizing residual SIC14 and 

chlorine with calcium hydroxide. 

(10) A gas-f ired, air-cooled, Therminol-66* system 

for removing the heat of condensation and 

sensible heat from the by-pr.duct gases. 

Although the major objective of the PDU program was to demonstrate 
the operability of the four critical EPSDU units and to collect engineering 

daLa, an effort was made to obtain as high a purity as possible in the silicon 
product so that it might be useful within the LSA Project. To that end, 

high-purity semiconductor-grade silicon was obhined and crushed and leached 

for use as seed particles, as described in the Phase 1/11 Final Report(l). 

Further, semiconductor-grade SiC14** was used in conjunction with high-purity 

zinc***. The initial coating of the reactor with silicon was designed to 

minimize impurity transfer from the graphite, as noted previously. 

* Monsanto Company. 

** Semiconductor-grade SiC14, Texas Instruments, Inc. 

*** 99.99 percent, Belmont Smelting 6 Reftning Works, Inc. 
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P W  OPERATIOn 

Operation of the PDU w a s  designed t o  answer the  following quest ions:  

W i l l  t he  SiC14(g) preheater  (lower s e c t i o n  of the 

fluidized-bed r e a c t o r )  perform as  designed? What 

is the a v a i l a b l e  margin? 

Can adequate c o n t r o l  of the vaporizat ion rate of 
zinc be exercised v i a  induct ion hea te r  power c o n t r o l ?  

Can the zinc inventory i n  the vaporizer  be monitored 

by i ts  induct ive c h a r a c t e r i s t i c s ?  

Can zinc vapor f r e e  of z inc  m i s t  be generated*? 

Are the f l u i d i z a t i o n  c h a r a c t e r i s t i c s ,  shown t o  be 

s a t i s f a c t c r y  i n  the Miniplant and i n  roam-temperatwe 

modelling experiments, reproduced i n  the PDU r eac to r?  

Are the favorably high r e a c t i o n  e f f i c i e n c y  (1.60 percent)  

and s i l i c o n  production r a t e  (230 l b / h r  f t 2 )  maintained 

i n  the l a r g e r  r e a c t o r ?  

Can the negat ive temperature g rad ien t  toward the top 

of the fluidized-bed r eac to r  be maintained i n  t h e  

l a r g e r  u n i t  so that appreciably increased r e a c t i o n  

e f f i c i e n c y  can be gained as  w a s  observed i n  the  

Miniplant? 

Are the amounts of s i l i c o n  w a l l  depos i t ,  gas-phase- 

nucleated s i l i c o n  and entrained zinc ch lo r ide  within 

the manageable l i m i t s  predicted from Miniplant 

evperience? 

What r a t e  of c h l o r i n a t i o n  of the s i l i c o n  wall depos i t  

c3n be maintained a t  reasonable ch lo r ine  u t i l i z a t i o n  

ef f ic iencv? 

Does the time required for c h l o r i n a t i o n  f i t  i n t o  a 

reasonable turn-around cyc le?  

* I t  i s  e s s e n t i a l  that the amount of zinc m i s t  en t e r ing  the r eac to r  be 
minimized, a s  i t  is known to  lead t o  the formation of f i n e  s i l i c o n  
needles. 
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(11) Can the proper gas  purge and s i l i c o n  granule  flow 

balance be maintained i n  the  product-withdrawal 

tube so as  t o  prevent condensation of z inc i n  the 

withdrawal tube? 

(12) Can undes i rab le  segregat ion of the f i n e l y  divided 

Zn(s) and S i ( s )  be avoided before  the  350 C s l u r r y  

reaches the  e l e c t r o l j t i c  cell  a t  500 C (melting 

poin t  of z inc = 420 C)? 
Can t he  condensed by-product s l u r r y  conta in ing  

f i n e l y  divided Zn(s) (%9 v/o) and S i ( s )  (*.2 v/o)  

be r e c i r c u l a t e d  i n  the condenser so as  t o  provide 

the  w e t t d - w s l l  a c t i o n  requi red  f o r  ope ra t ion  of 

the condenser as designed? 

Can acceptab le  cu r ren t  and power e f f i c i e n c i e s  be 

maintained i n  the  e l e c t r o l l t i c  c e l l  d e s p i t e  the  

p o t e n t i a l  r e s t r i c t i o n  of e l e c t r o l v t e  f l o w  r e s u l t i n g  

from increas ing  the  a n d 2  area by 2.5 t i m e s  t h a t  

c u r r e n t l y  used a t  the  Bureau of Mines, Reno S t a t i o n ?  

(Although the anode a r e a  is  increased by 2.5 times, 

the  length  of the  channel through which t h e  e l e c t r o -  

l y t e  c i r c u l a t e s  is increased by a f a c t o r  of only 1.4.)  

(15) Are the re  unforeseen problems wi th  the  c r i t i c a l  equip- 

(13) 

(14) 

ment items o r  with o ther  p a r t s  of the PDU whose e a r l y  

s o l u t i o n  would bene f i t  a subsequent EPSDU program? 

PDU a c t i v i t i e s  w i l l  be discussed i n  terms of (1) a desc r ip t ion  of 

a normal s ta r t -up  and opera t ing  procedure, ( 2 )  a h i s t o r y  of actual opera t ing  

experience,  and (3) a d iscuss ion ,  based on that opera t ing  experience,  of t h e  

o p e r a b i l i t y  of t he  four  bas ic  u n i t s  being evaluated i n  the PDU. 

37 
BLSTTBLLE - C O L U M B U S  



PDU Star t -up and Operating Procedure 

Normal opera t ion  of t h e  PDU c a l l e d  f o r  maintaining t h e  f l u i d i z e d  

bed and its assoc ia t ed  equipment a t  temperature a t  a l l  t i m e s ,  and i n f t i a t i n g  

and terminat ing t h e  runs  by feeding r e a c t a n t s  and c o l l e c t i n g  r e a c t i o n  pro- 

d u c t s  i n  ba tches  corresponding t o  the feeding of 6SO l b  of Sic14 (63.2 l b  of 

s i l i c o n  product i n  8-hour opera t ion  under cond i t ions  of Figure 10). 

The e l e c t r o l y t i c  c e l l ,  being one-third t h e  capacity of t h e  t h r e e  

i n  the 25 Wl'/year EPSDU design,  would be operated betveen PDU runs t h r e e  hours  

f o r  every one hour of PDU operat ion.  

The importance of keeping t h e  r e a c t o r  system ho: w a s  t o  avoid the 

problem of d i f f e r e n t i a l  con t r ac t ion  once t h e  system had been success fu l ly  

brought t o  opera t ing  temperature. 

Although the  opera t ing  procedure ( inc luding  br inging  the  system t o  

operat ing temperature) was a l t e r e d  dur ing  t h e  course of t he  program a s  the  

r e s u l t  of experience,  i t  may be descr ibed i n  i t s  p re fe r r ed  form a s  shown i n  

Table 3. 
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TABLE 3. PDU PROCEDURES. 

Operation 
No. Opera t ion 

1 F i l l  zinc reser-voir w i th  anode b a l l s  and/or e l e c t r o l y t i c  c e l l  
product and start ardon purge t o  melter, t r a n s f e r  piping and 
valve. 

Note: If melter is  already hot  and zlnc molten, a d d i t i o n  
of z inc  m e l t  s tock must be done vcry c a r e f u l l y  t o  
avoid poss ib l e  damage t o  cement j o i n t  a t  o u t l e t  tube. 

Heat zinc r e s e r v o i r ,  p iping and valve t o  450 - 500 C, al lowing 
s u f f i c i e n t  time for e n t i r e  charge t o  become molten. 

S t a r t  argon purge flows t o  remaining sys tem components: 

Zinc vaporizer  and feeder  @ a00 cc/min 
Sic14 vapor izer  @ a 0 0  cc/min 
Reactor discharge p o r t  @ ~ 5 0 0  cc/min 
Reactor top s h e l l  @ minimum d e t e c t a b l e  flow t o  keep 

manometer p re s su re  equal  or  g r e a t e r  than t h a t  of 
r e a c t o r  freeboard manometer 

Reactor bottom s h e l l  @ 11600 cc/min 
Reactor s i g h t  p o r t  @ 6 0 0  cc/min 
Reactor/condenser f lange connection @ ~ 5 0 0  cc/min 
Condenser s h e l l  top @ ~ 3 5 0  cc/min 
Condenser sump, packing gland, f l ange  connections @ 

ZnCl2 r e s e r v o i r  @ %350 cc/min 
ZnC12 a u x i l i a r y  feed tank (! ~ 3 5 0  cclmin 

low but p o s i t i v e  flows 

4 Eegin heat-up of system components. 

4. I Reactor Heaters: Zone 1 t o  950 C 
Zone 2 t o  950 C 
Zone 3 t o  950 C 
Zone 4 t o  900-910 C 
Zone 5 t o  875-890 C 

Note: During r e a c t o r  heating, reactor lcondenser  flange con- 
nect ion must be con t ro l l ed  to  permit g raph i t e  f l anges  
t o  move 1atera:ly without r e s t r a i n t .  SIC14 i n l e t  
f lange b o l t s  should be removed, b o l t  holes sealed,  and 
f l ange  periphery sealed wi th  neoprene band. 
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TABLE 3. CONTINUED. 

Operat ion  
No. Operat ion 

4.1 Note, Cont: A s o l i d  graphi te  d i s c  spacer is i n s e r t e d  i n  reac- 
tor/condenser connection u n t i l  bo th  r eac to r  and 
condenser are f u l l y  heated. Disc then replaced 
wi th  graphi te  r i n g  and connection t ightened.  

4.2 

4.3 

5 

6 

7 

a 

9 

Condenser system: Condenser bottom (2 zone) t o  350-360 C 
Condenser sump t o  350 C 
Condenser/sump and condenser o u t l e t  

connections t o  350 C 
Auxi l l ia ry  ZnC12 tank t o  350 C 
Therminol system t o  350-355 C 
Condenser top hea ter  t o  365-380 C 

Note: I n t e r n a l  temperature a t  top of condenser must 

Condenser l i qu id  discharge p ip ing  
ZnC12 s torage  tank t o  350 C 

Vapor discharge piping t o  350 C 

330 C before  s t a r t i n g  run. 
be t o  

and 

Sic14 vaporizer  t o  175-200 C 
Sic14 vapor piping t o  200 C 

After r eac to r  has achieved opera t ing  temperature, c a r e f u l l y  
t i gh ten  Sic14 i n l e t ,  reactor lcondenser  f lange  connections,  
place atmosphere purge band on reactor /condenser  connection 

I n s u l a t e  reactor lcondenser  piping and hea t  t o  900 C. 

Adjust ZnC12 l e v e l  i n  condenser r e se rvo i r  and sump tank. 

Prepare exhaust gas  n e u t r a l i z e r  drums; 20-30 l b  (9-14 kg) 
l i m e  t o  40 ga l  H 2 0  and ind ica to r .  

Check a l l  va lves  i n  system f o r  proper pos i t ion :  

Chlor inat ion i n l e t  
Chlor inat ion exhaust 
S t r ippe r  vapor exhaust 
ZnC12 re se rvo i r  i n l e t  
ZnCJ? r e se rvo i r  dra in  
Cell C l z  exhaust 
Condenser equal izer  

Closed 
Closed 
Open 
Open 
Closed 
Closed 
Open 
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TABLE 3. CONTINUED. 

- I 
Operation 

No. Operation 

9 

10 

11 

12 

13  

14  

15 

16 

1 7  

18 

19 

Exhaust l i q u i d  t r a p  i n l e t  and o u t l e t  Open 
Exhaust l i q u i d  t r a p  by-pass Closed 
Exhaust gas  scrubber (2)  1 Open, 1 Closed 
S i l i c o n  product d r a i n  f l appe r  Closed 

Closed Sight  po r t  f l appe r  

Check system f o r  gas  t i gh tness ,  con t inu i ty  of flow pa ths  
through system and p o s s i b i l i t y  of blockage by increas ing  
ind iv idua l  purge flows, observing bubbling a t  n e u t r a l i z e r s  
and observing system pressures .  

F i l l  z inc feeder  with zinc.  

Heat zinc vapor izer  ( induct ion)  t o  950 t o  1000 C. 
Heat zinc vapor l i n e  ( r e s i s t a n c e )  t o  1000-1100 C. 

Increase r eac to r  purge flows l i s t e d  f o r  bed support ,  check 
system pressures:  

Zinc vapor izer l feeder  - 
sic14 vapor izer  - t o  5 i /min  
S i l i con  product discharge - to  maximum flow ( d - 5  p s i  back 

t o  5 Lfmin 

p res  s u r  e )  

Charge weighed bed of s i l i c o n  seed material (%17 l b ) .  
Increase r eac to r  s i g h t  po r t  purge t o  maximum, remove s i g h t  
g l a s s  and i n s e r t  s i l i c o n  seed hopper. P re s su r i ze  seed hopper 
from s igh t  po r t  purge supply. Introduce bed slowly over 3-4 
minute period. Renove seed hopper, c l o s e  f l appe r  va lve ,  
rep lace  s i g h t  g l a s s  and r e t u r n  purge flow t o  normal. 

Af te r  bed has a t t a i n e d  r eac to r  temperature,  slowly reduce 
s i l i c o n  product d ra in  purge t o  300-400 cclmin. 

Recheck sys tem pressures  and bed AP. 

Increase zinc f l a s h  vapor izer  temperature t o  1200 C .  

I n i t i a t e  ZnC12 r e c i r c u l a t i o n  i n  condenser. 

Begin SIC14 feed t o  vapor izer  a t  200 ccfmin. 
purge a s  vapor iza t ion  r a t e  i nc reases  t o  maintain purge pres- 
sure  constant  u n t i l  minimum purge r a t e  of 1-1.5 a b l n  I S  

a t t a i n e d .  

Reduce argon 
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TABLE 3 .  CCNTINUED. 

Operation 
No. Operation 

20 S t a r t  z inc  feeder  down d r i v e ,  observing time when zinc f i r s t  
e n t e r s  z inc  vaporizer .  
ra te  i n c r e a s e s  to maintain cons t an t  back Pressure u n t i l  mini- 
mum purge rate of 1-1.5 E f m i n  is a t t a i n e d .  

Reduce argon purge as vapor i za t ion  

21 Readjust  r e a c t o r  s h e l l  purges as necessary t o  maintain proper 
p re s su re  balance.  

RUN 
PROCEDURE 
- 

1 Maintain s p e c i f i e d  ope ra t ing  cond i t ions  f o r  8-hour period. 
Monitor and record temperatures,  pressures ,  r e a c t a n t  and 
purge flows, bed AP, e tc .  a t  r egu la r  i n t e r v a l s  a s  ind ica t ed  
on record shee t s .  (-.g.,) 

Reactor temperature - 927 C - bed zone 
Zinc feed rate - 0 .52  lb/min - based on feeder  d r i v e  speed 
Sic14 feed ra te  - 206 cclmin - l i q u i d  
Reactorlcondenser cross-over temperature -~925 C 
Condenser temperature - ,~350 C 
Fluidized bed AP - 2.27" H20 (50 mm Hg) 

2 

3 

S i l i c o n  production should be e.g., -1.89 kg/h and w i l l  
cause bed AP t o  increase.  A t  prescr ibed i n t e r v a l s ,  remove 
s i l i c o n  product from bed by i n t e r m i t t e n t  opening and c los ing  
of product removal valve.  Average removal rate should be 
%63g/min t o  maintain bed AP a t  d 7 "  H20. 
tube purge rate a t  Elmin argon. 

Maintain withdrawal 

Samples of r e a c t i o n  by-products may be taken a t  var ioc? i n t e r -  
v a l s  during the  run by a t t ach ing  an evacuated cy l inde r  a t  t he  
po r t s  provided. P o r t s  a r e  provided f o r  sampling of:  

Liquid e f f l u e n t  from condenser 
Vapcr e f f l u e n t  from s t r i p p e r  
E f f luen t  from c h l o r i n a t i o n  of r eac to r  
E l e c t r o l y t i c  c e l l  exhaust gas 

In order t o  sample t he  r eac to r  freeboard f o r  gas-phase nucle- 
a t ed  s i l i c o n ,  SiCl.4, zinc and ZnClq con l - ,n t r a t ions ,  i t  w i l l  
be necessary t o  remove the  s i g h t  por t  g l a s s  and i n s e r t  a sam- 
p l e  probe through the  f l appe r  valve.  
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TABLE 3. CONTINUED. 

Opera t i o n  
No. Operat ion  

4 A t  z inc  feeder  drive reversal, plunger reaches bottom of stroke 
a f t e r  every 54 minutes of opera t ion ,  plunger withdraws r ap id ly  
t o  top  of s t roke ,  while feeder  r e f i l l s  wi th  l i q u i d  z inc  from 
reservoir. During t h i s  approximately 2-minute i n t e r v a l ,  no 
z inc  is being fed  t o  reactor. Monitor z inc  feed system pres- 
su re  c lose ly ,  a d j u s t i n g  argon flow rate as necessary to  pre- 
vent  l o s s  of bed support .  

SHUT-DOWN 
PROCEDURE 

A t  conclusion of 8-hour run period: 

1 Deact iva te  l i q u i d  z inc  feed va lve  ( d e f a u l t s  t o  c losed)  during 
f i n a l  z inc  feeder  downstroke. 
s t r o k e  and plunger withdrawal, deac t iva t e  feeder  d r i v e  mecha- 
nism. 
i z e r  t o  10 Rlmin as vapor izer  inventory  is deple ted  t o  maintain 
bed support .  

Af t e r  completion of feed 

Gradually increase  argon purge flow through zinc vapor- 

2 

3 

4 

A f t e r  z inc  vapor izer  has  emptied ( ind ica ted  by decreased power 
consumption by Thermionic conver te r ) ,  t u r n  of f  SIC14 feed t o  
f l a s h  vapor izer  and gradual ly  inc rease  argon purge flow t o  
10 Rlmln as inventory is deple ted ,  t o  maintain bed support .  

After both zinc and SIC14 are c l ea red  from reac to r ,  open 
s i l i c o n  product d r a i n  valve,  dropping; bed i n t o  hopper. 
Tendency f o r  br idging  of f r e s h  seed (angular  p a r t i c l e s )  
r e q u i r e s  s p e c i a l  purge procedure, no t  necessary wi th  
f r e e r  flowing rounded p a r t i c l e s  of lower seed content .  

Note: 

After bed has dra ined ,  as indica ted  by s teady  bed AP of 1-2 in 
H20, reduce argon purges through z inc  and Sic14 feed systems 
t o  0.5 t o  1 t h i n  stand-by rate. 
product hopper t o  maximum flowmeter s e t t i n g  t o  promote cool- 
ing  of drained bed. 

Increase  argon flow through 

Heat ZnC12 s t r i p p e r  t o  350 C f o r  30 minutes t o  melt and d r a i n  
ZnC12 accumulated dur ing  r eac to r  opera t ion .  
sump pump and al low condenser inventory t o  d ra in .  

Turn off  ZnC12 

After product hopper has cooled t o  <lo0 C and with f lapper  
valve closed,  remove product hopper f o r  emptying and seal 
bottom of f lapper  valve housing t o  exclude a i r  from r e a c t o r ,  

4 3  
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TABLE 3. CONTINUED. 

Operation 
No. Operation 

ZnC 1 2  
ELECTROLYSIS 

Open ZnC12 s torage  tank d r a i n  valve;  connect l e v e l  probe l e a d s  
i n  e l e c t r o l y t i c  c e l l ;  and energ ize  automatic l e v e l  c o n t r o l  sys- 
t e m ,  opening ZnC1 flow c o n t r o l  valve.  

Open e l e c t r o l y t i c  c e l l  ch lo r ine  exhaust va lve ;  energ ize  r e c t i -  
f i e r  power supply; and gradual ly  increase  c e l l  cu r ren t  t o  5000 
t o  6000 amp t o  begin e l e c t r o l y s i s .  

1 

2 

2 

7 

Energize l i q u i d  z inc  overflow por t  hea t e r  and a d j u s t  vo l tage  
t o  maintain overflow por t  a t  450-500 C. 

Continue e l e c t r o l y s i s  f o r  24 hours or u n t i l  ZnC12 supply from 
s torage  tank i s  deple ted .  Record c e l l  cu r ren t ,  vo l tage  
temperature a t  f requent  i n t e r v a l s  t o  permit c e l l  e f f i c i ency  
evaluat ion.  

Maintain c e l l  temperature a t  500 C by r egu la t ion  of cool ing 
water flow t o  anode pos t .  

Co l l ec t  z inc produced a t  overflow por t  i n  c ruc ib los ,  allow t o  
s o l i d i f y  and record weight of z inc  c o l l e c t e d ,  approximate pro- 
duc t  ion r a t e  . 
After e l e c t r o l y s i s  period has  concluded (ZnC12 s torage  tank 
emptied), deac t iva t e  r e c t i f i e r  power supply i n  reverse  se- 
quence from s ta r t -up  allowing auxi1j.q-y h e a t e r s  t o  maintain 
c e l l  temperature a t  450 C. 
post t o  minimize power consumption. 

Reduce coo.ling water flow t o  anode 

8 Liquid zinc overflow l i n e  from c e l l  must  e i t h e r  be maintainn,d 
a t  450 C or removed from c e l l  and emptied t o  prevent breakage 
of quar tz  ves se l .  

it- - .  -_c_ _I_- - 
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Because of va r ious  l i m i t a t i o n s  of equipment and procedure, t o  be 

descr ibed,  t h e  opera t ion  procedure was not  c a r r i e d  out  as ou t l i aed  f o r  a 
f u l l y  mature run of 8-hour durat ion.  However, cons iderable  progress  was 
made i n  improving t h e  o p e r a b i l i t y  of t h e  equipment and iden t i fy ing  needs 

f o r  longer  iange design modif icat ions.  

PDU Operating Experience 

A t o t a l  of 25 a t tempts  a t  sus ta ined  opera t ion  of the  PDU (except 

f o r  t h e  e l e c t r o l y t i c  c e l l )  were made during the  course of t h e  program as 
summarized i n  Table 4. 

t i o n a l  s t a t u s  (defined as feeding  both SiC14 and Zn vapors t o  the  f l u i d i z e d  

bed r e a c t o r )  p r i o r  t o  October, 1980, was very  low, wi th  only two successes  

out  of 16 i n i t i a t i o n s .  Termination of these  i n i t i a t i o n s  r e su l t ed  from a 
v a r i e t y  of design and cons t ruc t ion  d e f i c i e n c i e s  and ope ra t iona l  problems, 

t h e  immediate causes of run terminat ion being summarized i n  the  tab le .  

I n  add i t ion  t o  t h e  problems l i s t e d ,  numerous minor concomitant d i f f i -  

cu l t ies  and equipment f a i l u r e s  were experienced whict. have been d e a l t  with 

i n  more d e t a i l  i n  the  preceding q u a r t e r l y  r epor t s .  Because many of those 

d i f f i c u l t i e s  appeared t o  recur  throughout the  per iod,  i t  was decided i n  

l a t e  September, 1980, t o  cease opera t iona l  a t t empt s ,  eva lua te  the  sources  

of these  recur ren t  problems, and implement, as f a r  as  poss ib le  wi th in  a 

four- t o  six-week t i m e  frame, permanent o r  long term s o l u t i 0 ~ 3 .  The d i f f i -  

c u l t i e s  i d e n t i f i e d  and addressed a t  t h i s  time and previously during the  

course of the program are sumar i zed  i n  Table 5, along with the  remedies 

appl ied.  

i d e n t i f i e d  with an  a s t e r i s k  (*) are the  d i f f i c u l t i e s  encountered and cor- 

r e c t i o n s  made once opera t ion  of t he  PDU had been resumed. 

As ind ica ted ,  t he  frequency of achieving opera- 

Also l i s t e d  i n  t h i s  t a b l e  f o r  t h e  sake of completeness and 

The modi f ica t ions  t o  the  PDU c a r r i e d  out  during October and e a r l y  

November, 1980, served t o  g r e a t l y  improve the  r e l i a b i l i t y  of t h e  system, 

e s p e c i a l l y  during s ta r t -up .  

t h a t  t he  frequency of achleving opera t iona l  status (as def ined above) was 

increased from 12.5% t o  67% or  six of nine i n i t i a t i o n s ,  compared t o  the  

e a r l i e r  two of s ix t een .  The u l t ima te  goal of sustained 8-hour operat ion 

By r e f e r r i n g  t o  Table 4, one can uee 
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of the  system was not  achieved wi th in  t h e  con t r ac t  per iod,  however, s i n c e  

a new generat ion of opera t iona l  problems was d isc losed  and inherent  

system weaknesses which could not  be remedied wi th in  the  scope of t h e  

p ro jec t  e f f o r t  remained. 

Although most of the problems immediately respons ib le  f o r  t h e  

terminat ion of opera t ing  trials were addressed and cor rec ted  as they 

occurred, t he  underlying problem of general  d e t e r i o r a t i o n  of t h e  r e a c t o r  

could not  be overcome. 

considerable  improvement being made i n  the  o p e r a b i l i t y  of t h e  PDU, adequate 

eva lua t ion  of t he  four  major components w a s  no t  accomplished as planned. 

Comments on the  s t a t u s  of these  u n i t s  a t  t he  end of t h e  PDU program are 

included i n  t h e  following sec t ion  of t h i s  r epor t .  

As t h e  r e s u l t  of t h i s  s i t u a t i o n  and i n  s p i t e  of 

S t a t u s  of Operabi l i ty  of t h e  
Four C r i t i c a l  PDU h i t s  

Zinc Vaporizer and Feed System 

I n i t i a l  operat ion i n  the PDU of the  direct-induction-coupled 

zinc vaporizer  pictured i n  Figure 11 revealed l i m i t a t i o n s  that were not  

encountered i n  an e a r l i e r  laboratory-scale  design-rate  tes t  of t he  con- 

cep t (2 ) .  These l i m i t a t i o n s  were r e l a t e d  t o  the less e f f i c i e n t  coupling 

obtained with the  l a rge r  induct ion c o i l  (used t o  provide f o r  th icker  in- 

su l a t ion )  and the formation of a p a r a s i t i c  plasma i n  t h e  vapor phase 

which d id  not p e r m i t  s u f f i c i e n t  coupling t o  the zinc t o  achieve the design 

r a t e  of vaporizat ion.  

Although so lu t ions  t o  these problems eventua l ly  emerged as the  

result  of experimental work described i n  t h i s  r epor t ,  i t  was decided p r io r  

t o  that t i m e  t o  d e f e r  a t tempts  t o  use  the  direct-coupled vaporizer  In  the  

PDU and r e tu rn  t o  a scaled-up vers ion of t he  graphi te - t ray  " f lash  vaporizer"  

used  previously i n  the  Miniplant.  

the  vaporizer  was fed with l i q u i d  zinc from a re se rvo i r  by displacement with 

a descending p is ton .  

As pic tured  i n  Figures  14 ,  15, and 16, 
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Although this alternative vaporizer had the disadvantage of 
greater lag in response of vapor flow to a change in liquid feed rate, 

it was believed that the PDU could be operated reliably with it, pending 
development of the more desirable direct-coupled vaporizer. However, 
despite the fact that the displacement-fed graphite-tray vaporizer was 

operated on several occasions at feed rates of up to 50 percent of desjkn, 

the operation was not without its own set of problems, most of which appeared 
to be mechanical. These include: 

1. Breakage of quartz tubing between valve and feeder, 

feeder and vaporizer, and from vaporizer to reactor 

2. Leakage of zinc at the graphite control valve: 

a. past the valve seat 

b. through graphite/graphite and graphite/quartz 

c. through Grafoil-packed joints 

joints 

3.  Deterioration by oxidation of graphite lines and 

parts from exposure to air at 500 C, despite 

isolation with an argon blanket. 

4 further reservation with regard to the long-term operability 
of the zinc-feed system is the fact that the recharging of the displacement 

reservoir v3s never carried out routinely during a run. In most cases 

this resulted from shutdown being dictated by other factors unrelated to 

the operation of the z inc  feed system, and does not preclude routine recharging. 

Although improvements were made in the operation of the zinc feed 

system during the course of the program with respect to the deficiencies 

listed above, it is believed that further refinements will be in order 

before operation of the system can be classified as routine. 

Fluidized-Bed Reactor 

Operation of the PDU showed that appropriate fluidization of 

the particle bed could be maintained at zinc vapor and Sic1 feed rates 

of at least one-half of design rate, the maximum explored. However, such 
4 



opera t ion  was no t  maintained f o r  s u f f i c i e n t  per iods  of t i m e  t o  ob ta in  

r e l i a b l e  d a t a  on the  e f f i c i e n c y  of conversion of S i c 1  which could be 4 
compared with t h e o r e t i c a l  p red ic t ions  and wi th  Miniplant experience.  

A s i g n i f i c a n t  accomplishment wi th  t h e  f l u i d i z e d  bed r e a c t o r  was 

the  f requent  demonstration of withdrawal of t h e  f l u i d i z e d  bed from t h e  

bottom of t h e  r e a c t o r .  However, such withdrawal has y e t  t o  be made dur- 

i ng  flow of the  r e a c t a n t s ,  and the  importance of keeping z inc  ou t  of t h e  

product withdrawal tube on such occasions was demonstrated when z inc  inad- 

v e r t e n t l y  en tered  t h e  product withdrawal tube r e s u l t i n g  i n  s o l i d i f i c a t i o n  

and immobility of t h e  mass of s i l i c o n  wi th in  t h e  withdrawal tube. 

By f a r  t h e  most s e r i o u s  l i m i t a t i o n  of t he  f l u i d i z e d  bed r e a c t o r  

as p resen t ly  designed relates t o  the p rov i s ions  made f o r  i s o l a t i n g  t h e  

hot  ( 9 2 5  C )  g raph i t e  r e a c t o r  from ambient to  prevent  a i r  oxidat ion.  

Enclosure by a s t a i n l e s s  steel s h e l l  was chosen as a reasonable  expedient.  

However, t h i s  choice was accompanied by two problems: 

1. AJ.t!,ough provis ions  were made f o r  t he  c o n t r o l  and 

accommodation of d i f f e r e n t i a l  thermal expansion 

between t h e  g raph i t e  r eac to r  and the  s t a i n l e s s  

s tee l  s h e l l ,  such provis ions  were not  adequate 

t o  avoid f requent  breakage of t he  upper and lower 

g raph i t e  appendages of the  r eac to r .  P a r t  of t h e  

problem is suspected t o  have been r e l a t e d  t o  c reep  

of t he  s t a i n l e s s  steel s h e l l ,  as some progress ive  

permanent d i s t o r t i o n s  were observed. Further ,  i t  

i s  suspected t h a t  r e s idua l  t o r t i o n a l  stresses l e f t  

a f t e r  unannealed welding of t h e  s h e l l  l ed  t o  unpre- 

d i c t a b l e  lateral  displacements  during hea t ing  and 

coo 1 ing  . 
2. The t h i n  s t a i n l e s s  s teel  bellows used t o  accommodate 

thermal expansion d i f f e r e n t i a l s  were sub jec t  t o  cor- 

ros ion  by zinc andlor  z inc ch lo r ide  which inadve r t en t ly  

en tered  the  annulus between the  s h e l l  and t h e  r eac to r .  

Unless such i n t r u s i o n  can be prevented, i t  appears  t h a t  
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a s t a i n l e s s  s teel  j a c k e t  is imprac t i ca l  f o r  t h i s  

app l i ca t ion .  

The problen uf  thermal expansion-induced breakage would be minimized 

once normal ope ra t ion  is achieved and the  f r equen t  hea t ing fcoo l ing  c y c l e s  

experienced with the  PDU can be avoided. Improvements i n  provis ions f o r  iso- 

l a t i n g  z inc  and z inc  ch lo r ide  from the annulus can undoubte*ilY be made. 

Accordingly, t h e  design of t h e  r e a c t o r  should be reviewed w i t t l  the o b j e c t i v e  

of i d e n t i f y i n g  designs which would b e t t e r  i n s u r e  t h i s  i s o l a t i o n  o r  provide 

improved corrosion r e s i s t a n c e .  

material i ne r t  t o  both the  r e a c t i o n  spec ie s  and t o  a i r .  

One such design would be based on quartz ,  a 

By-Produc t Condenser 

The wetted-wall condenser of the  PDU is  designed t o  condense the  

by-product z inc  ch lo r ide  a s  a l i q u i d  and the  unreacted z inc  as  a suspen6ed 

s o l i d  f o r  r e t u r n  t o  the  e l e c t r o l y t i c  c e l l .  

provided t o  handle the  z inc  ch lo r ide  t h a t  escapes the  wetted-wall condenser 

[0.7g/hr under the  cond i t ions  of Figure 8 i f  t h e  z inc  ch lo r ide  content  of 

t he  e x i t  gas  (Sic14 + Ar) from the  condenser is brought t o  equi l ibr ium with 

the  condenser wa l l  a t  350 C ] .  

The z inc  c h l o r i d e  s t r i p p e r  is 

Owing t o  the  s h o r t  c y c l e s  of ope ra t ion  of t h e  PDU, it w a s  n o t  

poss ib l e  to  ob ta in  q u a n t i t a t i v e  da t a  on the  e f f i c i e n c y  of operat ion of t h i s  

condenser sys tem.  Alchough progress w a s  made i n  e l imina t ing  some recogniz- 

able causes of i n e f f i c i e n t  condensation (by-passing of t h e  condenser pass  

p i a t e  due t o  low ZnC12 l e v e l ,  e t c . ) ,  problems with unexplained downstream 

plugging during ope ra t ion  a t  only 50 percent of design capac i ty  remained a t  

the end of t h e  program which l e f t  open the  quest ion of the  b a s i c  design of 

the ZnfZnC12 condenser as  i t  r e l a t e s  t o  condensation e f f i c i e n c y .  

The condenser must  quench the  r e a c t i o n  by-product mixture so t h a t  

continued r e a c t i o n  of Sic14 with l i qu id  z inc  t o  form a mass of s i l i c o n  

needles i s  prevented. However, quenching must not be s o  g r e a t  a s  t o  c r e a t e  

ZnC12 fog which is entrained i n  the  of f  gas  and is thus not sub jec t  t o  con- 

t r o l l e d  removal. 
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An a l t e r n a t i v e  t o  the p re sen t  des ign  t h a t  would avoid fogging 

is a condenser ope ra t ing  c l o s e r  t o  equi l ibr ium, i .e.,  a t  a higher  su r face  

temperature and wi th  correspondingly g r e a t e r  h e a t  t r a n s f e r  a r e a .  It w i l l  

be  r e c a l l e d  that such a concept was i n i t i a l l y  incorporated i n  the  EPSDU 
design but  was la ter  abandoned i n  favor  of the  lower temperature condenser 

which had t h e  advantages t h a t  (1) the  zinc ch lo r ide ,  provided t o  w e t  the  

condenser w a l l ,  could be recycled i n  d i r e c t  con tac t  wi th  stainless steel, 

thus avoiding g raph i t e  l i n i n g  of t h e  equipment, and (2) the  by-product 

mixture would be n o s t  e f f e c t i v e l y  quenched, t hus  avoiding t h e  formation 
of s i l i c o n  needles.  

As t hese  advantages are s t i l l  compelling, a d e f i n i t i v e  answer 

a s  t o  the  condensation e f f i c i e n c y  of t h e  p re sen t  low-temperature condenser 

should be obtained so as to  confirm i ts  f e a s i b i l i t y ,  before  use of the  

less d e s i r a b l e  high-temperature des ign  is  again considered. 

From the  l imi t ed  experience with t h e  r e c i r c u l a t i o n  of t h e  ZnC12 

i n  t h e  wetted-wall condenser a f t e r  modif icat ion,  i t  can be concluded t h a t :  

Liquid ZnC12 can be r e c i r c u l a t e d  through the  

system a t  c l o s e  t o  design ra te  

Temperature of r e c i r c u l a t i n g  ZnCl2 can be 

maintained a t  350-360 C by the  Therminol 

and ex te rna l  sump tank hea te r  

(1) 

( 2 )  

(3) Design of the  v e r t i c a l  c a n t i l e v e r  pump 

appeared s a t i s f a c t o r y :  

(a)  l i t t l e  o r  no leakage a t  purged seal 

(b)  pumping r a t e  s a t i s f a c t o r y  

(c )  s t a i n l e s s  s t e e l  held up we l l  i n  environ- 

ment of molten ZnC12 
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It is  of course poss ib l e  that n e i t h e r  the  low-temperature 

2 
nor the  high-temperature condenser nay be s a t i s f a c t o r y  because of ZnCl 

fog generat ion i n  t h e  f i r s t  case and si l icon needle generat ion In t h e  

second case. I f  that should be t r u e ,  the  a l t e r n a t i v e  of quenching t h e  

by-product wi th  l i q u i d  SiCll t o  form a s l u r r y  f o r  later sepa ra t ion  

should be considered. 

E l e c t r o l y t i c  C e l l  

J u s t  as the l imi t ed  accumulated PDU run time precluded f u l l  

t e s t j n g  or the  wetted-wall condenser, evaluat ion of the  e l e c t r o l y t i c  c e l l  

was l imited.  Although operat ion of the  c e l l  wi th  s o l i d s - f r e e  ZnC12 t KC1 

was a t  one time contemplated, i t  w a s  believed b e s t  t o  await the  accumulation 

of a f u l l  charge of r e a c t i o n  product ZnC12 (+ Zn, + Si) so t h a t  the e f f e c t  

of suspended zinc and s i l i c o n  on the  c e l l  ope ra t ion  could be s tudied.  

the f u l l  charge was never a v a i l a b l e ,  the eva lua t ion  did no t  reach  that 

point .  

As 

Despite the l imited eva lua t ion  of the  e l e c t r o l y t i c  c e l l ,  i t  i s  

believed that, on the basis of r ecen t  Bureau of Mines experience with pro- 

t r a c t e d  operat ion of a 2000-amp c e l l ( 8 a ) ,  i ts  operat ion should be one of 

the less troublesom asDects of the  system once o p e r a b i l i t y  of t h e  PDU is 

es t ab l i shed .  
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- PROCESS DISCUSSION 

Experience wi th  the  PDU opera t ion  on the  p re sen t  prnqram has been 

discussed above a s  i t  relates tc, the  s t a t u s  of o p e r a b i l i t y  of thc  four  c r i t i c a l  

u n i t s  of t h e  PDU. It remains t o  summarize t h i s  experience and relate i t  t o  

o t h e r  a s p e c t s  of the o v e r a l l  process  so t h a t  recommendations can be made f o r  

f u r t h e r  development. 

During t h e  course  of t he  PDU program a l a r g e  number of design,  

equipment and procedural  problems were solved which brought t h e  program 

c l o s e r  t o  the  goa l  of r o u t i n e  "8-hour ba tch  opera t ion  f o r  t he  accumulation 

of engineer ing d a t a  on t h e  four  bas ic  u n i t s  being evaluated.  

t o  r e s i d u a l  problems, t h a t  goa l  w a s  no t  r eache l  and s e v e r a l  a spec t -  of t h e  

process  need t o  be given a d d i t i o n a l  a t t e n t i o n .  

However, owing 

The following s u m a r i z e s  the  s t a t u s  of t h e  va r ious  s e c t i o n s  of 

t he  process  and the requirements  f o r  f u r t h e r  development: 

Sic14 Product ion 

The technology f o r  Sic14 product ion from c t l o r i n e  and 

s i l i c o n  carb ide  has been developed adequately f o r  com- 

mercial  opera t ion  by seve ra l  manufacturers. 

- The design ai equipment and operatirig procedures 

would be obtained irom those i n  the  indus t ry  f a m i l i a r  

with i t .  

Sic14 P u r i f i c a t i o n  

The design of t he  SIC14 p u r i f i c a t i o n  sec t ion  of the 

50 MT/year EPSDU has  been based on s tandard p rac t i ce .  

- Use of the  EPSDU design of t he  Sic14 p u r i f i c a t i o n  

sec t ion  should involve no more than the  usual  minor 

problems assoc ia ted  with s ta r t -up  of a petrochemical 

opear t ion .  

Zinc Vaporization 

The zinc vapor izer  used i n  the  PDU was shown t o  be 

workable. The f e a s i b i l i t y  of the  direct-coupled 

indue tion-heated vapor izer  was demonstrated i n  the  

1abor.itorv. This  concept obv ia t e s  the need f o r  the  
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rechargeable r e s e r v o i r  and p r e s e n t s  o the r  advant:iqe . 
- Future process  dmelopment should include s u b s t i t u -  

t i o n  of t he  direct-c3upled vaporizer  and provis ions 

f o r  i nc reas ing  the  ruggedness of t he  quart:, zinc- 

t r a n s f e r  l i n e s .  

Sic14 Vaporizer 

After improving the d i s t r i b u t i o n  of the  en te r ing  

l i qu id  SiC14, no problems remained wi th  the Sic14 

vaporizer  of the PDU. 

- The p resen t  Sic14 vaporizer  should be adequate f o r  

f u t u r e  u s e  i n  the  PDU. A direct-heated b o i l e r  would 

be used i n  a l a r g e r  i n s t a l l a t i o n  (EPSDU). 

S i C l r ,  Preheater  

As f a r  a s  could he determined by the  "DU operat ion,  

the SIC14 preheater  performed according t o  design. 

However, the  imp l i ca t ions  of inadequate preheat ing 

are s u f f i c i e n t l y  s u b t l e  t h a t  more experience would 

be required t o  confirm adequacy. 

- The p resen t  preheater  design appears t o  be adeqsate  

f o r  f u t u r e  u s e .  

Fluidized-Bed Reactor 

PDU operat ion d i sc losed  l i m i t a t i o n s  of the  present  

r e a c t o r  design with regard t o  provis ions f o r  thermal 

expansion d i f f e r e n t i a l s  and p ro tec t ion  of the a r a p h i t e  

l i n e t  from the  ambient. 

- Further work with the  process a t  the  PDU s c a l e  should 

be c a r r i e d  out  with a quartz  r e a c t o r  i f  i t  i s  no t  pos- 

s i b l e  t o  conceive design changes t h a t  would c o r r e c t  the  

l i m i t a t i o n s  of the presen r e a c t o r .  

Product Withdrawal System 

The product withdrawal sys tem was used t o  discharge the  

f lu id i zed  bed on seve ra l  occa,cions, but not  during pro- 

duc t i cn .  Prevention cf zinc vapor i n t r u s i o n  i s  imperative.  

- Prevention of zinc vapor i n t r u s i o n  by designed use of 

purge gas  m u s t  be evaluated i n  f u t u r e  work; a l t e r n a t i v e l y ,  
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provis ion could >e made f o r  p e r i o d i c a l l y  i n t e r r u p t i n g  

zinc flow ( s u b s t i t u t i n g  argon f o r  f l u i d i z a t i o n )  dur ing  

product removal. 

ZnIZnC12 By-product Condenser - 
Adequacy of the by-product condenser f o r  quenching the 

reduct ion r e a c t i o n  (avoiding S i  needle  forma t ion)  with- 

ou t  fogging ou t  ZnC12 (and Zn) has not  been t e s t e d  in 

? tmited PDU operat ion.  

- Continued PDU work would include eva lua t ion  of present  

and possibly a l t e r n a t i v e  condenser designs.  

ZnI~nC12 Storage - 
Although the an t ic ipa tEd l a r g e  amounts of condensate 

were not  handled i n  the PDU opera t ion ,  the present  tank 

f o r  intermediate  s torage  i s  t e n t a t i v e l y  judged t o  be 

adequate. S e t t l i n g  and immobilization of suspended 

zinc over a long period of t i m e  remains a concern. 

- Validat ion of the mo3i l i ty  0 -  Zn/ZnCl? i n  and ou t  

of the s torage  tank, and i t s  pro t rac ted  corrosion-free 

s:rage, must be undertaken i n  fucurc work. 

ZnC12 E l e c t r o l y s i s  
- 

L i m i t e d  opers t icn  of the PDU d id  not  genera te  s u f f i c i e n t  

q u a n t i t i e s  of  ZnC12 (containing suspended zinc and sili- 

c m )  t o  permit ~ v a l u a t i c n  of the e l e c t r o l y s i s  c e l l  on 

the  present  program. However, success  with l a r g e  ZnC12 

e l e c t r o l y s i s  c e l l s  a t  t he  Bureau of Mines encourages 

the continued use of t h i s  concept. 

- F u t u r e  development would include the v e r i f i c a t i o n  of 

the design of the ZnC12 e l e c t r o l y s i s  c e l l  k i t h  par t icu-  

lar a t t e n t i o n  t o  the adequacy of c h l o r i n a t i o n  of the 

suspended si1 icon. 

k'aste Disposal -_ 
The present  svsten f o r  djsposing of waste C1Cl4 and ch lor ine  

is judged t o  be adequate,  although subjec t  t o  improvement. 

- I'se of the present  waste d isposa l  system wcmld be contin- 

ued  i n  f u t u r e  development work in  the PDU but a more automated 

system would be u s e d  i n  a l a r g e r  i n t t a l l a t i o n  (EPSDU). 
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Chlorination of Wall Deposit 

Although the chlorination of deposited silicon and errant 
zinc was carried out for  the removal of constrictions on 

several occasions in the PDU program, the growth of signi- 
ficant wall deposits and their controlled chlorination 

were not involved in the limited PDU operation. 
- Controlled chlorination of wall deposits would be subject 
to investigation in future development work. 

In summary, although progress has been made, problems remain and 
the future of the fluidized-bed zinc vapor reduction of SiClr, will depend 

upon the evolution of a suitable alternative design for the fluidized-bed 

reactcr and a verification of adequate performance of the units whose designs 

have not yet been fully tested. 

RECOMMENDAT IONS - -. 

It ' s  recommended that the next step in development of the process 

be the des ign  of an alternative fluidized-bed reactor, based on quartz con- 
struction or an alttrnative, and the incorporation of that reactor in the PDU 
equipment, to be operated with the objectives adopted for the present program. 

Tho results o f  that operation should then support a basic decision on the 
overall feasibilitv of the process and of the equipment for carrying obt its 

operation c m e r c  iallv. 
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EXPERlMENTAL SUPPORT _-__ --. 

During the  C-ourse of the  Phase-I11 program, whose major cmphasis 

was on the  PDU a c t i v i t i e s .  a complementary experimental  support  program was 

maintained which dcoalt wi th  problems r e l a t e d  t o  the  PDl’, but which could b .  

solved independently of i ts  opera t ion .  The fol lowing items were given a t t en -  

t i o n  t o  a g r e a t e r  o r  lesser degree: 

(1) Determination of product qu‘ility. 

( 2 )  Outgassing o f  r e s idua l  z inc f r o m  product granules .  

( 3 )  V o l a t i l i z a t i o n  o f  impur i t i e s  from the  zinc 

vaporizer. 

( A )  Hcacit?s the  zinc vaporizer by direc t -c%oupled  RF. 

( 5 )  M c ~ k - ~ p  a f  w e t  ted-wLlll ct>Ildt.>11stx1-. 

(6) Srprefi.it ion o f  1,irpe p.trt i c l e s  in i l u i d i z c d  bed. 

( 7 )  Fcriorm.ince o !  e l e c t r o l y t i c  c e l l .  

T t i c s e  s u h j c z t s  w i l l  h c  disL-usstd in turn. 
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9 i2-cm ca lcu la t ed )  ind ica ted  some degree of autodoping, t h e  source  of which 

would be of ' n t e r e s t  t o  i d e n t i f y  i n  f u t u r e  work wi th  t h e  product.  The g ranu la r  

form of t h e  product (See Figure 17)  is gene ra l ly  viewed a s  being convenient  f o r  

subsequent handling. 

F l iE ina t ion  of Residual - Zinc 

The presence of r e s i d u a l  z inc  i n  the  Miniplant product and i t s  

impl ica t ions  were d iscussed  i n  p r i o r  Quar te r ly  Progress  Reports ( l o *  11) and 

a d e t a i l e d  a n a l y s i s  of i ts removal by heat  t reatment  was given(12).  

d ingly ,  t h i s  r epor t  is l imi ted  t o  the  p re sen ta t ion  of cne add i t iona l ' i t em of 

r e l a t e d  d a t a  and a summary of t he  conclusions.  

Accor- 

The l e v e l  of r e s idua l  z inc i n  the  Miniplant product ranged from a 

few hundred t o  a few thousand ppmw, dependit, upon the cond i t ions  of prepara- 

t ion .  The p robab i l i t y  t h a t  much of t h e  r e s i d u a l  z inc i n  the  "high-zinc" 

samples o r ig ina t ed  as  occluded z inc  m i s t  d r o p l e t s  from the  f l a s h  vapor izer  

osed i n  the  Miniplant is supported by the  presence of l a r g e  q u a n t i t i e s  of 

r e s idua l  z inc i n  s i l icon-encapsulated agglomerates of s eve ra l  p a r t i c l e s .  In  

one run for example, such agglomerates of from perhaps 20 to  50 granules  con- 

s t i t u t e d  0.2 percent  of the product.  

Although the  zinc-mist theory i s  a t t r a c t i v e ,  t he  e f f e c t  of cap i l -  

l a r i t y  i n  a microporous s t r u c t u r e  should not  be overlooked. Based on published 

equat ions( l3)  f o r  t he  lowering of  t he  vapor pressure  of a l i q u i d  absorbed i n  

c a p i l l a r i e s ,  the  tendency fo r  spontaneous evaporat i  ' any occluded zinc can 

be negated i n  a 1-atm ambient a t  s eve ra l  degrees  abot,  i h e  normal b o i l i n g  point  

i n  a s t r u c t u r e  with pores  xO.lum. 

Conversely, z inc can be condensed i n t o  pores  a t  temperatures seve ra l  

degrees  above the  normal b o i l i n g  poin t  ( e . g . ,  10 degrees  C for  0.03pm pores)  

from an ambient conta in ing  zinc a t  a p a r t i a l  p ressure  of one atmosphere. I f  

i t  were not  for the  c l e a r  evidence of the  p a r t i c i p a t i o n  of z inc d r o p l e t s  i n  

t h e  formation o f  the  agglomerates noted above, one might be tempted t o  a s s ign  

the zinc occ lus ion  mechanism e n t i r e l y  t o  non-equilibrium condensation i n  pores.  





Prospects  fo r  Decreasing the Residual Zinc 
Content of the Product 

I f  t h e  above-suggested d rop le t  entrainment mechanism for t h e  occ lus ion  

of zinc i n  the  product is v a l i d ,  two l e v e l s  of improvunent can be an t i c ipa t ed .  

In  the  f i r s t  place,  providing for t h e  disentrainment  of t h e  large;  zinc m i s t  
d r o p l e t s  can be expected t o  decrease the  r e s i d u a l  z inc conten t  dramat ica l ly  bv 

a s su r ing  i n s t a n t  evaporat ion of t h e  surv iv ing  smaller z inc  d r o p l e t s  on con tac t  

wi th  t h e  s i l i c o n  p a r t i c l e s .  Secondly, decreas ing  t h e  quan t i ty  of z inc  that i s  

c a r r i e d  t o  t h e  f lu id i zed  bed a s  a m i s t  w i l l  no t  only decrease  t h e  quan t i ty  of 

occluded r e s i d u a l  z inc,  bu t  w i l l  decrease  propor t iona te ly  t h e  r e s idue  of o the r  

non-volat i le  contaminants c a r r i e d  i n  the  zinc m i s t .  

I t  should be noted that the  zinc vapor iza t ion  and t r a n s f e r  system 

i n  the  PDU provided a g r e a t e r  opportunA-y (much longer l i n e )  f o r  the  evapor- 

a t i o n  of m i s t  d r o p l e t s  than was provided i n  the  Miniplant.  

packing was provided for  disentrainment  by impingement. However, t he  l i n e  

v e l o c i t i e s  were somewhat bigher  than i n  the  Miniplant,  so it is no t  noss ib l e  

t o  p red ic t  t he  n e t  e f f e c t  on m i s t  genera t ion  and t r anspor t .  

no da;a were obtained on the  zinc content  of material depos i ted  i n  the  PDU 

because t h e  run condi t ions  were not  w e l l  enotigh e s t ab l i shed  i n  the  sho r t  runs  

t o  make such da ta  r e l i a b l e .  

Fur ther ,  some 

Unfortunately,  

Despite the  absence of da t a  and the  necess i ty  of conjec ture ,  i t  is 

bel ieved that the  zinc conten t  of a properly designed and opera t ing  f a c i l i t y  

would be i n  the 100 ppmw range. To go below t h a t  po in t  one has t h e  opt ions  

of removing the r e s idua l  z inc by: 

(1) Heat treatment of t he  product i n  vacuum or  i n e r t  gas  

below the  melt ing poin t ,  or 

( 2 )  Melting the  product (da ta  presented i n  the  Phase 1/11 

Fina l  Repor t ( l )  ind ica ted  t h a t  the  zinc l e v e l  

could be dr iven  t o  c10 ppm by t h i s  t reatment) .  

E i ther  of these  opt ions  c a r r i e d  out  as p a r t  of t h e  s i l icon-pro-  

duct ion process  would add cos t .  Further ,  the second opt ion  obv ia t e s  the 

advantage of t he  free-flowing granular  form of the  present  product and is  

therefore  r e j ec t ed  as a so lu t ion  t o  the  problem. Thus the  first opt ion ,  
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being the  least undesirable ,  was considered and experiments were c a r r i e d  

out ,  as discussed lster, t o  ob ta in  da t a  that would permit extrapo!ation 

from t h e  Miniplant-size p a r t i c l e s  (400dm) t o  the  l a r g e r  s ize  (e.g., 800um) 

expected i n  a commercial operat ion.  

cons ider  s e r i o u s l y  the  imp l i ca t ions  of n o t  removing r e s i d u a l  z inc  from the  

product granules .  

However, i t  is be l ieved  prudent to 

Impl ica t ions  of Not Removing t h e  Zinc 

Although leaving  up t o  100 ppmw of an impuri ty  i n  a su?posedly 

high-purity product is psychological ly  d i s tu rb ing ,  t h e  cp t ion  is worthy of 
c r i t i c a l  eva lua t ion  because no c o s t  is added. 

l i k e l y ,  that fus ion  of t h e  s i l i c o n  is e f f e c t i v e  i n  e l i m m a t i n g  the  zinc,  and 

t h a t  t he  ingot-, ribbon-, or sheet-growing processes  a l l  provide t h e  condi- 

t i o n s  necessary f o r  z inc removal, one need only questioii  t h e  consequences 

of t he  zinc evolu t ion .  Zinc evolu t ion  w i l l  obviously add to  t h e  products  of 

outgassing inherent  i n  any of these  opera t ions ,  and t h e  r e l a t i v e  amount added 

w i l l  depend upon t h e  quan t i ty  of z inc  being hairdled. 

In the  growth of s ing le -c rys t a l  i ngo t s  by the  Czochralski  process ,  

I f  i t  can be assumed, as appears  

ca re  is taken, by means of s u i t a b l y  d i r ec t ed  i n e r t  sweep gases ,  t o  prevent t he  

condensation of S i 0  [from the  r eac t ion  with the  c ruc ib l e ,  S i ( % )  + Si02(s )  = 

2SiO(g)] a t  l oca t ions  t h a t  would permit i t s  f a l l i n g  back i n t o  the  melt, and 

s i m i l a r  precaut ions  would appear t o  be appropr i a t e  f o r  any zinc evolved i n  

the  process.  

However, a number of processes  being considered by the  LSA pro jec t  

e i t h e r  do not  have t h a t  r e s t r i c t i o n ,  or  provide f o r  phys ica l  i s o l a t i o n  of t h e  

melt ing process from the  growth area, which obv ia t e s  t he  problem wi th  regard 

t o  z inc.  

Fall-back of condensed zinc is obviously of no concern i n  the  

Heat Exchange Method (HEM) of ingot  growth being s tudied  by Crys t a l  Systems, 

Inc., (14) and conversa t ions  wi th  members of t h e i r  s t a f f  have ind ica ted  t h a t  

the  granular  form of t he  BCL product would be eminently s u i t a b l e  f o r  t h e i r  

use,  d e s p i t e  i c s  z inc conten t .  

melt replenishment processes  being s tudied  by o t h e r s ,  provided t h e  condensed 

zinc does not over ly  tax  the  provis ions  a l ready  a v a i L o l e  f o r  handling the  

condensed ma te r i a l s .  

The same should be t r u e  of t h e  i s o l a t e d  
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Since a l l  of the  shee t  processes  now under cons idera t ion  involve 

the  use  of qua r t z  c r u c i b l e s  f o r  mel t ing the  s i l i c o n  and holding it during 

the  growth process,  a l l  are sub jec t  t o  t h e  evolu t ion  of SiO(g) and condensa- 

t i on  of t h i s  material a t  s o m e  point .  The key t o  the  a c c e p t a b i l i t y  of zinc 

evolu t ion  is  the  quant i ty  of evolved zinc r e l a t i v e  t o  evalved S O .  

a n a l y s i s  of t h i s  r a t i o  was undertaken for a t y p i c a l  Czochralski process,  as  

discussed i n  the  l b e n t i e t h  Quarter ly  Progress  Report (12) .  

Thus, an 

As an example, consider  1 2  Kg of l i q u i d  s i l i c o n  (4800 cc)  i n  a 18-cm 

diameter c r u c i b l e  f i l l e d  t o  the  19-cm l e v e l ,  from which a 12-cm diameter ingot  

is pul led i n  4 hours. 

s i l i c o n  on the average of one hour during an assumed 2-hour melt t i m e  and 2 

hours during the  4-hour p u l l  t i m e ,  o r  a t o t a l  of t - 180 minutes, one can 

c a l c u l a t e  the  r a t i o  of z inc t o  S i 0  volume as a func t ion  of z inc conten t  of the  

s i l i c o n .  These r e s u l t s  i n d i c a t e  t h a t  a t  or below the  100 ppm l e v e l  (where the  

r a t i o  of the  zinc t o  S i0  volume is 0 . 0 5 ) ,  i t  may even be d i f f i c u l t  t o  d e t e c t  

the zinc evolut ion.  Zinc a t  t h a t  l e v e l  would c e r t a i n l y  appear t o  place no 

s i g n i f i c a n t  a d d i t i o n a l  burden on c leaning  the  apparatus .  

Assuming that the c r u c i b l e  is exposed to  the  molten 

I t  should be noted that zinc condensate may even be l e s s  detrimen- 

t a l  t o  the  c r y s t a l  growth process  than S i 0  condensate, i n  t h a t  when a p a r t i c l e  

of zinc drops t o  the  sur face  of the melt, i t  can be expected t o  evaporate  

quickly r.qther than possibly f l o a t  t o  the  growth i n t e r f a c e  and d i s r u p t  the 

growth meckanism a s  occurs  w i t h  S i0  p a r t i c l e s .  

evolved p r i m a r i l y  i n  the  melt ing s t e p  should be covered over with S i 0  during 

the p u l l .  

Moreover, the  zinc being 

In l i g h t  of the above, i t  is recommended t h a t  those concerned with 

the  ingot-, sheet- ,  or  web-forming processes  gige s e r i o u s  cons idera t ion  t o  

inves t iga t ion  of the  use  of the  BCL-process s i l i c o n  i n  the  "as-is" condi t ion  

once s u f f i c i e n t  q u a n t i t i e s  a r e  ava i l ab le .  

Heat Treatment Experiments 

As noted above, the most a t t r a c t i v e  opt ion  f o r  removal of r e s i d u a l  

z inc a s  p a r t  of t h e  s i l i c o n  production process  is outgassing a t  some tempera- 

t u r e  below the melting poin t  of s i l i c o n .  

I t  was reasoned t h a t  the t r anspor t  of z inc from the body of the  

granule  t o  the e x t e r i o r  would be r a t e  l i m i t i n g  whether vacuum or  an iner t  
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sweep gas  is  used t o  remove t h e  zinc evolved i n  a hea t  treatment.  
as descr ibed i n  the  Eighteenth Quarterly Progress  Repor t ( l l ) ,  samples of Mini- 

p l a n t  product (%400pm d i a )  i n  evacuated qua r t z  tubes  were hea t  t r e a t e d  as  a 

func t ion  of t i m e  and temperature. 

-4ccordingly, 

In  order  f o r  t hese  da t a  t o  be use fu l  i n  p red ic t ing  t h e  outgassing 

behavior of t h e  l a r g e r  (800-loohm) product granules  expected eventua l ly ,  a 

mode1 was needed f o r  t h e  zinc t r anspor t  which adequately desc r ibes  the  outgas- 

s ing  behavior of t h e  present  samples. 

which desc r ibe  t h e  outgassing of sphe r i ca l  p a r t i c l e s  have two l i m i t a t i o n s  f o r  

t h e  present  use: 

Models a v a i l a b l e  i n  the  l i t e r a t u r e  

By con t ra s t :  

(1) 

S o l u b i l i t y  of t he  d i f f u s i n g  spec ie s  (or  s t rong  

absorp t ion)  is assumed such that a monatonic 

concent ra t ion  gradien t  ex is t s  along t h e  r a d i u s  

of t he  granule  which changes progress ive ly  

wi th  t i m e ,  and 

No provis ion  is made f o r  the  presence of a 

zinc-free core .  

The zinc is  present  i n  q u a n t i t i e s  considerably 

above the  s o l u b i l i t y  l i m i t  (e.g., 0.03 ppmw a t  

900 C), and 

The a v a i l a b l e  samples have zinc-free co res  

(27 v/o  f o r  Run 50, 1 2  v / o  f o r  Run 96). 

Further ,  the  ind ica t ion  of po ros i ty  i m p l i c i t  i n  the  temperature rise on expo- 

s u r e  of outgassed p a r t i c l e s  t o  a i r  ( see  the  Sixteenth/Seventeenth Quar te r ly  

Progress Report('') for d e t a i l s )  sugges ts  t h a t  t he  model take  i n t o  considera- 

t i o n  va r ious  poss ib le  condi t ions  r e l a t i v e  t o  the  po ros i ty  of the  granules .  

Three cases  have been considered: 

Model A - Zinc highly d ispersed  a s  a second phase i n  

sphe r i ca l  p a r t i c l e s ;  r a t e  of outghssirig 

l imi t ed  by d i f f u s i o n  through the  s i l i c o n  

between the  r e t r e a t i n g  two-phase f r o n t  

and the  outer  sur face .  

70 
B A T T E L L E  - C O L U M B U S  



Model B - Zinc trapped i n  s i l i c o n  surrounding pores  

of connected po ros i ty ;  r a t e  of outgassing 

l imited by d i f f u s i o n  through the  s i l i c o n  

surrounding the  pores; n e g l i g i b l e  resis- 

tance t o  flow i n  the connected pores. 

Model C - Zinc contained s o l e l v  i n  connected po ros i ty  

which is f i l l e d  with zinc; rate of autgas- 

s i n g  l imited by the permeabili ty of t he  

connected porosi ty .  

The d e r i v a t i o n  of equat ions r e l a t i n g  outgassing t i m e  fo r  these models 

i s  d e t a i l e d  i n  the Twentieth Quarterly Progress Report (12).  

R e s u l t s  of the  Heat Treatment Data 

Nodel A 
The l a rge  discrepancy i n  the  apparent  d i f f u s i o n  c o e f f i c i e n t  f o r  t h e  

high- and low-zinc samples, p l u s  the  lower-than-predicted rate of i n i t i a l  

outgassing, l ed  t o  the  r e j e c t i o n  of Model A a s  a v a l i d  r ep resen ta t ion  of t he  

zinc t r anspor t .  

Model B 

In t r e a t i n g  the da t a  i n  accordance with Model B, i t  w a s  necessary t o  

enter values  f o r  pore s i z e  and volume f r a c t i o n  of po ros i ty .  For t h e  same 

assumed pore s i z e  and porosi ty ,  the  da t a  were i n  disagreement. However, agree- 

ment could be obtained by assuming d i f f e r e n t  Dore-sizelporosity combinations 

f o r  the two samples s tud ied .  This is not t o t a l l y  unreasonable f o r  samples  of 

widely d i f f e r e n t  zinc content .  Further,  the  p o r o s i t i e s  ( e . g . ,  2 percent)  and 

pore s i z e s  (e.g. ,  1.5-3.4pm) t h a t  f i t  t he  d a t a  when the  published value of 

d i f f u s i v i t y ( ; j )  i s  used, seem t o  be cons i s t en t  with what one sees i n  the par- 

t i c l e  cross-sect ions (however, no s t a t i s t i c a l  count and measurement of pores 

was made). 

To obtain information on the po ros i ty  of the  Miniplant product, a 

s i n g l e  measurement with the mercury porosimeter was made on the granules  from 

Run 50 a f t e r  256 hours outgassing a t  900 C.  The r e s u l t s ,  given i n  Table 6 ,  
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TABLE 6.  MERCURY POROSIMETER MEASUREMENT OF 
RUN-50 IIATERIAL AFTER 256 HOURS IN 
VACUUM AT 900 C .  

Pressure, Diameter of Pores Volume 
Psig Penetrated, um* Lnange, % 

14.7 
29.4 

J 

3527 
4 

4115 
4409 

J 

10,287 

10,875 
.c. 

14,696 (end) 

15 
7.5 

J 

0.062 
.1 

0.053 

0.050 
+ 

0.021 

0.020 
+ 

0.014 

0 

0 

+ 
0.7 

+ 
0.7 
2.8 

4 

2.8 

3.5 
+ 

3.5 

* On the assumption of zero wetting. 
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suggest that the bulk of the  connected poros i ty  ( ind ica ted  t o  be s3 percent*) 

is i n  t he  range of 0.05um diameter and below, i.e.,  i ncons i s t en t  wi th  the  

requirements f o r  the  Model-B t reatment .  The poroslmeter da t a  are, however, 

more cons i s t en t  wi th  the  heat  e f f e c t  observed when the  products  of Runs 97 

and 98 of the  Miniplant were exposed t o  air a f t e r  vacuum outgassing(lO).  

The observed 70 C spontaneous temperature rise corresponds t o  oxida t ion  of 
0.17 percent  of the  s i l i c o n  ( ad iaba t i c  t reatment) .  I f  t h i s  material is assumed 

t o  c o n s t i t u t e  t he  walls of t h e  pores ind ica ted  by the  da t a  of Table 6, it  cor- 

responds t o  the  ox ida t ioc  of 4 monolayers of s i l i c o n .  By c o n t r a s t ,  i f  t he  

oxid izable  area is represented by the  poros i ty  ind ica ted  by the  treatment by 

Model B, t he  hea t  generat ion corresponds t o  the  oxida t ion  of from 500 t o  1800 
monolayers, va lues  d i f f i c u l t  t o  reconci le  with the  observed r a p i d i t y  of t he  

hea t  evolut ion.  

A f u r t h e r  def ic iency  of the  Model-B t reatment  i s  the  low outgassing 

r a t e  a t  the  l a t e r  s t ages  of outgassing r e l a t i v e  t o  t h a t  predicted.  Part of 

t h a t  discrepancy might be resolved by the  assumption of a mixture of widely 

d i f f e r e n t  pore s i z e s ,  r a t h e r  than an average uniform pore size. 
It is a l s o  poss ib le  t h a t  t he  l ag  i n  outgassing is r e l a t e d  t o  an 

e n t i r e l y  d i f f e r e n t  phenomenon, i .e.,  the presence of a less mobile form of 

zinc In the p a r t i c l e s .  Whereas the  da t a  of one experiment a t  1050 C extrapo- 

l a t ed  t o  complete outgassing a t  from %30 t o  %40 hours,  depending upon the  

model used, about 20 ppmw zinc was found t o  remain a t  75, 100, and 125 hourcr. 

T h i s  suggests  t h a t  r e s idua l  zinc a t  the  20 ppmw l e v e l  was present  i n  a less 

mobile form, poss ib ly  as  the  oxide r e s u l t i n g  from s u p e r f i c l a l  a i r  oxidat ion 

on exposure of t he  sample t o  a i r .  

Although elemental  s i l i co i l  would be expected t o  reduce zinc oxide 

according t o  

1 1 - S i  + ZnO = - Si02 + Zn(g), AG a t  1300 K - -34 kca l ,  PZn = 106 atm, 2 2 

i t  is probable t h a t  a similar s u p e r f i c i a l  oxide f i l m  on the  s i l i c o n  would 

se r ious ly  l i m l t  such a r eac t ion  k i n e t i c a l l y .  

* If t h i s  poros i ty  is confirmed, the ind ica t ion  of s e g l i g i b l e  poros i ty  In  
e a r l i e r  measurements with the  xylene pycnometer (1) would have t o  be 
explained by penet ra t ion  of the po ros i ty  by the xylene. 
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I t  is no t  inconceivable t h a t  the  k i n e t i c s  of the  above r e a c t i o n  con- 

t r i b u t e d  s i g n i f i c a n t l y  t o  the rate of z inc  evolut ion i n  a l l  of t he  experiments. 

However, t h i s  complication has  no t  been explored. 

soure of the  discrepancies .  

Hodel C 

Its  presence may exp1.ain 

Model C assumed that the  z inc  f u l l y  occupies the  connected porosi ty .  

On t h i s  b a s i s ,  t he  po ros i ty  is p ropor t iona l  to the  z inc  content  and t h i s  com- 

pensat ion al lows f o r  t h e  s imi l a r i t y  of t he  outgassing behavior of samples wi th  

an almost 10-fold d i f f e r e n c e  i n  z inc  content.  

is  t h a t  i t  al lows f o r  a connected po ros i ty  of only ,~0.03 percent  f a r  t h e  material 

from one run and only ~~0.3 percent  f o r  that of t h e  o t h e r  run. 

excess  of t h a t  must be closed po ros i ty  f o r  t h e  model to  be va l id .  Again, having 

more d e f i n i t i v e  information on the  po ros i ty  would be he lp fu l .  

The d i f f i c u l t y  with t h i s  model 

Any poros i ty  i n  

As t he  t i m e  dependency of z inc  concentrat ion f o r  Model C is the same 

f o r  Model A, the  Model-C treatment does no t  a l te r  t h e  apparent l a g  of outgassing 

i n  the  e a r l y  stages of t he  experiment relative t o  t h a t  predicted.  

The important d i s t i n c t i o n  between Model C and Model B is that with 

the former, granule  s i z e  i s  an important f a c t o r  i n  the  r a t e  of outgassing 

whereas i n  the  case of Model B, the  l a r g e r  granules  obtained i n  production 

(800-1000um) would be expected t o  outgas a t  the  same r a t e  as  those (?.400r\m) 

used i n  the outgassing experiments. 

Thus, d e s p i t e  i t s  l i m i t a t i o n s ,  Model C w a s  used('') as a granule- 

size-dependent model t o  t reat  the  experimental  da t a  and t o  e x t r a p o l a t e  the  

r e su l t s  t o  a production s i t u a t i o n ,  i .e. ,  outgassing of l a r g e r  p a r t i c l e s  a t  

higher temperatures,  up t o  1100 C,  above which s i n t e r i n g  of t he  granules  

becomes a problem. 

The r e s u l t s  of t h i s  ex t r apo la t ion  are given i n  Table 7 f o r  granules  

i n i t i a l l y  containing 250 ppmw of zinc.  The times t o  reach z inc  l e v e l s  of 25 

and zero ppmw a t  1050 and 1100 C are given. As can be seen from t h i s  treat- 

ment, i f  Model C is v a l i d ,  hundreds of hours of heat  treatment would be 

required f o r  the  g ranu le s  expected t o  r e s u l t  from a commercial process.  

General DiscJssion of t he  Outgassing Experiments 

The major o b j e c t i v e  of t he  present  work was t o  f a c i l i t a t e  t he  ex t r a -  

po la t ion  of outgassing d a t a  obtained on the Minip lan t  product t o  the  l a r g e r  

granules  expected t o  be c h a r a c t e r i s t i c  of a commercial operat ion.  Unfortunately,  
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TABLE 7 .  TIMES TO OUTGAS GRANULES IN ACCORDANCE WITH MODEL C 

- 
Time, h, t o  Outgas for 

Stated Granule Radius, r l  
Aesidual Zinc, Terperature, 

PPmw C 200pm JOOum 400um 500um 

25 

0.0 

1100 153 394 72 1146 

1100 34 88 162 257 

1000 229 633 1217 1966 

1100 51 14 2 273 441 

rg = 7 5  m, rl = variable,  = 250 ppmw 

For 1000 C,  T - 1273K, P' = 2.341 atm, D' = 2.3 E-7 cm2 s-l 

For 1100 C ,  T = 1373K, P '  = 5.178 atm, D' = 5 . 1  E-7 cm2 s-' 

where r,, = seed radius 

r l  = granule radius 

Ci = i n i t i a l  Zn concentration averaged over granule 

P '  = equilibrium vapor pressure of zinc 

D '  = permeability (having dimensions of d i f f u s i v i t y )  

- 
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severa; u n c e r t a i n t i e s  and incons i s t enc ie s  remained i n  the  r e s u l t s  which would 

take  more work t o  r e so lve  than wocld be j u s t i f i a b l e  for t h i s  p e r i p h e r a l  Pro- 

blem. iiowever, t he  bulk of t h e  evidence poihlLs t o  the  ex i s t ence  of a connected 

p o r s s i t y  i n  t h e  product t h a t  would favor  rapid outgassing of t h e  granules .  

Table 7 is a "worst case" scenario,  i . e . ,  diffusion-l imited t r a n s p o r t  

from the  i n t e r i o r  t o  t h e  o u t e r  su r f ace  of t h e  p - r t i c l e .  I t  is  clear that out- 

gassing t i m e s  of t h e  o l d e r  of hundreds of hours would be r equ i r ed  f o r  g ranu le s  

of  a >. i c t i c a l  s i z e  i f  d i f f u s i o n  from t h e  body t o  the  oLier su r face  is l imi t ing .  

However, i f  vent ing or t he  i n t e i i o r  of the  g ranu le s  +Itrough a non-limiting net-  

work of p res  is permitted,  i t  rniy take no longer t o  outgas 800um-diameter 

granules  thatl i t  took t o  outgas  the  granules  that were employed experimental ly ,  

that is, of tne  o r ' e r  of t e i E  of hours. 

Cbviovs:y. a s  the  granule  s i z e  is f u r t h e r  increased,  a po in t  would 

be reac  hed, be.. :hicn t r anspor t  through the  connected p o r o s i t y  w i l l  become 

l imi t ing .  Howev:i, i t  i s  believed t h a t  t he  p re sen t  d a t a  i n d i c a t e  t e n s  of hours 

r a t h e r  than the  hundreds o f  k u r s  outgassing L i m e s  f o r  e.g., 800um-diameter 

granules.  

. .e on::- way t o  confirm t h i s  p r e d i c t i o n  would be t o  measure t h e  z inc  

'.s work. evolut ion from granules  s i g n i f i c a n t l y  l a r g e r  than those employed i r  

I t  w a s  hoped t h a t  such g ranu les  would be a v n i l a b l e  from t he  PDU operat ion.  

Gnfortunately,  such was not  the  case.  

When srlch work is even tua l ly  done, it would still  be of i n t e r e s t  t o  

study the outgassing as a funct ion of t i m e  t o  d e t e c t  the  sudden l e v e l l i n g  off 

of ,inc removal t ha t  would be a s sc - i a t ed  with the  presence Oi r e s i d u a l  z inc  i n  

comp?unc' form such as  w3.; suggested by the  r e s u l t s  of one experiment of the pre- 

s en t  work I t  would a l s o  be D f  i n t e r e s t  t o  i n v e s t i g a t e  the  po ros i ty  of t h e  

granules mor6 thorollghly and re la te  t h i s  t o  the  poss ib l e  outgassing mechanism 
(1)  d i f i l l s ion  of elemental zinc through s i l i c o n  and (2 )  r e a c t i o n  of s i l i c o n  

with zinc oxide. 



Vaporization of Zinc 

On2 of the major advantages of the zinc-reduction process is that, 
except for a few volatile impurities such as cadmium (which, like zinc, will 
not bt 

impurities such as titanium have negligibly low vapor pressures at the 
boillng point of zinc, and except for possible entrainment in zinc mist, 

are left behind in the boiler. 

as it has been shown that surfaces of condensed zinc in contact with SiClb(g) 

favor the nucleation of silicon needles which, if 3rown on zinc mist particles, 

would be entrained, and carried out of the fluidized bed, thus not becoming parc 

of the dense product heterogeneously deposited on the silicon seed granules. 

etaiaed oy mOIten silicon during initial cell processing), tiarmful 

Misting mist be minimized in any event, 

Two experiments were run, in each of which about 50 percent of a 

sample of zinc was volatilized and condeased, and the initial material, con- 

densate, and residue were analyz-?d for iron, lead and cadmium to determine 

the volatilitv ratios. When tl.sse are compared with those expected from the 

relative vapor pressure of the components, they can give either (1) confidence 

in the i4rification obtained at that point, or (2)  evidence for misting. 

I 

The relative volatility Q of the components of a binary solution, 

e.g., iron in zinc can be expressed as: 

where (CFe)v is concentration of iron in zinc condensate 
(CFE!l is concentration of iron in liquid zinc “heel” 

y = activity coefficient in sDlution 

p = equilibriuq vzpor pressure of pure component 

These equations are for instantanems values, i.e., differential values in 
a system whose composiiion varies with the amount of material distilled. To 
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ob ta in  the  va lue  of a from the  composition of t he  s t a r t i n g  material and hee l  

r e q u i r e s  mathematical i n t eg ra t ion .  

0 percent  Pb = 34.6 a t  923 K, YCd i n  zinc a t  0 percent  Cd = 4.15 a t  800 K. 
No d a t a  are given f o r  i r o n  but YFe is equal  10. 

the  a c t i v i t y  c o e f f i c i e n t  va lues  are also v a l i d  a t  the  b o i l i n g  po in t  of zinc.1181 K. 

Hultgren e t  a1 (16) give YPb i n  z inc a t  

It is f u r t h e r  assumed t h a c  

These a c t i v i t y  c o e f f i c i e n t s  and published va lues  of t he  vapor pres- 

s u r e s  lead  t o  t h -  following va lues  of t h e  r e l a t i v e  v o l a t i l i t i e s  t o  be expected: 

"ZnJFe = 10' 

qZn/Pb = 64 

aCd/Zn = 3.s 
I n  l i g h t  of these  values ,  no i r o n  should bz found i n  the  cmdensed vapor, very 

l i t t l e  lead should be found, and the  cadmium should be observed t o  vaporize 

p r e f e r e n t i a l l y .  

Table 8 gives  the  r e s u l t s  of t h e  f i r s t  experiment. 

TABLE a. DATA AND CALCULATED RELATIVE 
VOLATILITIES, EXPERIHENT A= 

Composition, ppwr 

Pb Cd 

I n i t i a l  Material 414.2 174 14 5 

Condensate 231.4 28 8 6 

Heel 182.8 423 24 <O. 5 

- - Fe Weight, g L 

I tern 

J Calculated 
I n i t i a l  I n i t i a l  vs.  

Ratio a Theoretical -- vs.  Heel Condensate 

Zn!Fe 109 

7n IPb 64 

zil 16 

* 8 

3.0 2.5 

- 3  3.5 

-_ i_--_ - .==-a -- T1_.T i ;= -----a- ;_5 . = ----/= 

* Spurious negative value due to poor material balance: 
iron apparentlv generate.' i n  heel .  



A spur ious  negat ive va lue  of aZa/Fe is  obviously due to a poor material balance,  

aqd al though the  condensate is lower i n  i r o n  than the  s t a r t i n g  material o r  hee l ,  

much more i ron  reached the  condensate than would be expecr .d .  

The problem with the material balance i s  ev ident  from an  eva lua t ion  

cf t h e  t o t a l  amount of t he  r e spec t ive  element present  i n  the  condensate and heel  

r e l a t i v e  t o  that present  i n  the  i n i t i a l  material. The va lues  f o r  t he  da t a  of 

Table 14 are Fe = 1.16, Pb - 1-08, and Cd = G.72. 

On the  assumption t h a t  b e t t e r  r e s u l t s  would be obtained i f  t he  conden- 

sate and hee l  were sampled as l i q u i d s  and not  allowed t o  f r e e z e  before  sampling 

(which could lead  t o  segregat ion) ,  a second experiment w a s  c a r r i e d  out  wi th  the  

materials being sampled while still  l i q u i d  and presumably homogeneous. 

r e s u l t s  are given i n  Table 9 -  

The 

TABLE 9. DATA AND CALCULATED RELATIVE 
VOLATILITIES, EXPERIHENT B. 

? 

Composi t ion, ppmw 

Pb Cd - - Fe I tern Weight, g - 
I n i t i a l  Material 235.2 1.9 0.2  0.06 

Condensate 125.7 1.4 0.2 0.03 

Hee 1 105.6 6 . 7  0.3 <0.02 

a, I n i t i a l ,  a, In i t i a l ,  
Rat io  a Theore t ica l  Heel Condensate 

Zn I Fe 109 * 1.5 

ZnIPb 64 2 1.0 

Cd I Zn 16 > 1 . 8  <1 
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Again, excessive amounts of iron and lead found their way to the condensate, 
and a poor material balance resulted in the apparent creation of iron in the 

heel. The total element in condensate plus heel relative to the starting 
material was Fe = 1.99, Pb = 1.22 ,  and Cd 0 . 4 2 .  With such discrepancies in 
the material balance, it is not possible to calculate reliable values of the 
relative volatility. However, the qualitative evidence for excessive vola- 

tilization of the iron and lead suggests that mechanical carry-over of these 
elements was taking place and that further study should be made of this ques- 

tion with the vaporizer actually being used in the PDU so that its degree of 
mist generation could be assessed. 

it, such a study remains to be done. 

As the progress with the PDU did not permit 

Direct Coupled Zinc Vaporizer 

As noted earlier, technology for the metering of zinc vapor at atmos- 

pheric pressure is believed to be non-existent. Accordingly, the zinc feed 

system used in the Miniplant consisted of a motor-driven piston for disvlacinp, 

zinc from a cylinder into an induction-heated graphite-tray vaporizer. When 
consideration was given to the scale-up of such a system, it was recognized 

that because of the high thermal capacity of the ,:raphite tray and appreciable 

inventory of liquid zinc in the vaporizer, considerable hysccrisis would be 

involved in the response of the zinc vapor flow to a change in the rate of 

liquid flow. To avoid this hysteresis, the concept of direct coupling of r.f. 

energy to the zinc was explored. 
Early experiments with this concept recorded in the Phase 1/11 Final 

F.eport(l) led to adoption of the vaporizer shown in Figure 11 f x  the PDU design. 
However, as noted in the PDU activities section of this report, peculiarities 
in the wave form of the r.f. power (high voltage peak on initiation of pulse) 

led LO the formation of a parasitic plasma in tbe zinc. vapor. Accordingly, the 

less desirable tray-type uaporizer --as installed in the PDU as an operating 

expedient, while efforts were made to evaluate the direct-coupled vaporizer 

independently . 
Owing to the pressure of work with the PDU,  the direct-coupled vapor- 

izer concept was only partially eval-iated. However. the important determination 

was made, that, in contrast with the plasm-forming behavior of the induction 
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un i t  that had the e l e c t r o n i c  power pulse  con t ro l ,  no plasma was observed with 

t h e  u n i t  having a sa tu rab le  cere-reactor  cont ro l .  

f u t u r e  use of the direct-coupled vapor izer  should be wi th  a saturable-core-  

reactor-control led r. f .  generator .  

It was t he re fo re  concluded that 

Segregation of "Large" P a r t i c l e s  i n  
the  Fluidized-Bed Reactor 

Experiments with a model of t h e  fluidized-bed r eac to r  of t he  EPSDU/ 

PJU design were descr ibed i n  the  Phase 1/11 Fina l  Report(1). 

Work on the  fluidized-bed model dur ing  the  present  report per iod was 

l imi ted  t o  the  quest ion as t o  whether o r  not  segrega t ion  by p a r t i c l e  s i z e  could 

be iuduced so t h a t  p r e f e r e n t i a l  withdrawal of t he  l a r g e r  p a r t i c l e s  might occur 

and plugging of t he  product-withdrawal tube by excess ive ly  l a r g e  p a r t i c l e s  might 

be av,ided. 

As discussed i n  that r epor t ,  segrega t ion  apparent ly  r e s u l t s  i n  areas 
where the  v e l o c i t y  of t he  incoming gas  is below the  minimum f o r  f l u i d i z a t i o n  

of the  l a r g e  particles and where the  c i r c u l a t i o n  of t h e  s m a l l  p a r t i c l e s  i n t o  

the  area is i n s u f f i c i e n t  to  impart  t h e i r  k i n e t i c  energy t o  t h e  l a r g e  p a r t i c l e s  

and move them out .  Such a condi t ion  is es t ab l i shed  i n  the  "boot" zone* of the  

f l u i d i z e d  bed being stuai.?d by U.C.C. i17) and has  been observed t o  a l imi t ed  

ex ten t  a t  BCL i n  o ther  bed-support geometries which have gas-veloci ty  transi-  

t i o n  reg ions  near  t he  i n l e t  (conica l  i n l e t ,  e t c . )  

Experiments aimed a t  de t ec t ing  segregat ion were c a r r i e d  out i n  the  

t ransparent  mock-up of t he  PDU f lu id i zed  bed descr ibed i n  the  Phase 1/11 Fina l  

Repor t ( l )  which has the  bed support  p l a t e  shown i n  Figure 18. 

was of sea sand having the  p a r t i c l e  s i z e  d i s t r i b u t i o n  of a "mature" bed, shown 

i n  Table 10. The f l u i d i z i n g  gas  was a i r  and the  v e l o c i t y  whs that judged qual- 

i t a t i v e l y  t o  give t h e  degree of bed a c t i v i t y  c h a r a c t e r i s t i c  of t he  Miniplant 

operat ion and the  projected PDU operat ion.  

r a t e  of 50-60 g/min required of t h e  PDU operat ion.  This  average w a s  obtained 

by f u l l y  opening the  withdrawal tube 1 out  of every -5 seconds ( a c t u a l  i n t e r -  

m i t t e n t  product withdrawal r a t e  = 750-900 g/min). 

The dummy bed 

The bed was withdrawn a t  the  average 

When only l imi ted ,  i f  ar.1, segregat ion was observed i n  the  i n i t i a l  

experiments, a few la rge  "marbles" (3000-4000p, about 0.1 percent  of the  t ed )  

~~ 

* Decreased-diameter, high-gas-velocity sec t ion  a t  bottom of r eac to r .  
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C 
4 

1 
dia. 

3.75-in. dia.- 

Zinc Inlet 
8 holes (5/32-in.) 

equally spaced 

FIGURE 18. DIAGRAM OF ROUND-B9TTOM DISTRIBUTOR 
USED IN MODEL STUDIES 

SIC14 Iniet 
12 holes (3/32-in.) 
equally spaced 
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TABLE 10. PARTICLE SIZE DISTRIBUTION FOR SEGREGATION 
EXPERIMENTS IN FLUIDIZED-BED NODEL.. 

105-149 

149-210 

210-279 

279-420 

420-590 

590-840 

840-1000 

1 000- 1 1 9 0 

1190-1410 

3.5 

6 .5  

16 .9  

19 .  > 

32.0 

16.5 

3.5 

1 . 3  

0 .3  

83 

B A T T E L L B  - C O L U M E U ~  



were added t o  widen the  spread of p a r t i c l e  s i z e .  Again, no c l e a r  evidence of 

segrega t ion  w a s  observed. 

A t  one poin t  i n  the  experiments some segrega t ion  w a s  observed t h a t  

was c o r r e l a t e d  wi th  t n e  r a t e  of purge gas  flow through the  product withdrawal 

tube. I n  t h e  l i g h t  of t h e  U.C.C. experience(17),  i t  i s  be l ieved  that t h e  pro- 

duct  withdrawal tube w a s  a c t i n g  as a "boot" and t h a t  segrega t ion  was occurr ing  

wi th in  the  product withdrawal tube i t s e l f  and n o t  i n  t h e  f l u i d i z e d  bed. 

A t  h igh enough purge gas  v e l o c i t y  i n  t h e  product withdrawal tube i t  

should be p s s i b l e  t o  p r e f e r e n t i a l l y  e l u t r i a t e  small  p a r t i c l e s  from t h a t  region 

and thus  prcmote segregat ion.  However, the  i n i t i a l  i n t e n t i o n  was t o  avoid such 

high flows and t h e i r  cool ing  e f f e c t  on t h e  bed. 

concluded that no apprec iab le  segrega t ion  could be a n t i c i p a t e d  i n  t h e  f l u i d i z e d  

bed under t h e  pro jec ted  opera t ing  condi t ions .  

Within t h a t  framework it  was 

It should be noted t h a t  t h e  incen t ive  t o  promote segrega t ion  i n  t h e  

PDU/EPSDU opera t ion  i s  l imi t ed  as  long as t h e  prospect  remains of d i scharg ing  

the  entire bed weekly to  ch lo r ina t e  the  w a l l  depos i t ,  a t  which time t h e  l a r g e r  

p a r t i c l e s  can be e a s i l y  removed. 

c h l o r i n a t i n g  t h e  wal l  d e p o s i t  decreases ,  i t  would be d e s i r a b l e  t o  explore  f u l l y  

the  impl ica t ions  of opera t ing  the  product withdrawal tube p e r i o d i c a l l y  a t  high 

purge velocit ies t o  promote segrega t ion .  

However, i f  t h e  necess i ty  of p e r i o d i c a l l y  

E l e c t r o l y s i s  of ZnC17 

As discussed above and i n  the  Phase 1/11 Fina l  Report('), t he  inten-  

t i o n  has been t o  u t i l i z e  the  experience of t he  Bureau of Mines, Reno, Nevada(7* 8 ,  

i n  t h e  design and opera t ion  of t h e  c e l l  f o r  e l e c t r o l y s i s  of ZnC12 f o r  z inc and 

ch lo r ine  recyc le .  However, experiments have been c a r r i e d  out  i n  the  present  

program t o  confirm the  experience of t he  Bureau of Mines and t o  account f o r  

d i f f e rences  i n  the  two s i t u a t i o n s ,  such a s  the  necess i ty  i n  t h e  present  program 

of ch lo r ina t ing  the  small q u a n t i t i e s  of f i n e l y  di-Tided elemental s i l i c o n  t h a t  

a r e  expected t o  f i n d  t h e i r  way t o  the  e l e c t r o l y t i c  ce l l s .  

P r io r  work with the  e l e c t r o l y s i s  of t h e  zinc ch lo r ide  by-product of 

p t i o r  Miniplant opera t ion  l ed  t o  the  fol lowing major conclusions: 
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(1) The Miniplant by-product condensate can be 

e l ec t ro lyzed  t o  recover  z inc  and ch lo r ine  from 

the  contained ZnCl2 without apparent  i n t e r f e r -  

ence (such a s  cell shor t ing )  by the  contained 

suspended z inc  and s i l i c o n  dus t .  

S i l i c o n  dus t  suspended i n  the  by-product con- 

densa te  can be ch lo r ina t ed  i n  t h e  e l e c t r o l y t i c  

c e l l  a t  least up t o  3 . 4  percent  of t h e  s l l i c o n  

production of t h e  f l u i d i z e d  bed. 

Cell vo l t ages  were higher’ than those  experienced 

by t h e  Bureau of Mines work. 

t o  relate p a r t l y  io e lec t rode  r e s i s t a n c e  loss 

and perhapa t o  less e f f i c i e n t  mixing of t h e  

ZnC12 wi th  t h e  KC1 e l e c t r o l y t e  inventory.  

t i o n  of t h i s  problem was being pursued. 

The pro jec ted  e l e c t r i c a l  energy requirement of 

about 2 kwh per pound of z inc  e l e r t ro lyzed*  

appeared t o  be reasonable .  

(2 )  

(3 )  
This is be l ieved  

Solu- 

( 4 )  

Although runs w i t h  cu r ren t  e f f i c i e n c i e s  of t h e  expected 95 percent  

were made i n  the  p r i o r  work(l) ,  t h e  cu r ren t  e f f i c i e n c y  sometimes f e l l  s h o r t ,  

and the power e f f i c i ency ,  around 20 percent ,  was c o n s i s t e n t l y  below t h e  s 3 6  

percent  obtained by the  Bureau of Mines i n  a small c e l l  and pro jec ted  f o r  t h e i r  

50,000-amp c e l l .  

I n  an  e f f o r t  t o  l e a r n  more about t he  s y s t e m  and t o  raise the  power 

e f f i c i e n c y  i f  poss ib l e ,  a more f l e x i b l e  c losed c e l l  was designed i n  which t h e  

e n t i r e  e l ec t rode  assembly was brought i n  from the  c e l l  cover so t h a t  i t  could 

be immersed i n  the  55 m/o ZnC12-45 m/o KC1 e l e c t r o l y t e  contained i n  a 1000-cc 

Pyrex beaker. To minimize the  change i n  c e l l  c h a r a c t e r i s t i c s  k - i n g  t h e  e lec-  

t r o l y s i s ,  no more than 20 percent  of t he  ZnC12 was e l ec t ro lyzed  dur ing  any run 

so t h a t  t h e  ZnC12 concent ra t ion  d i d  not  drop below 49  m/o. 

* I t  should be noted t h a t  the  power consumption of 2 kwh per pound of z inc 
adopted f o r  the  power consumption i n  the  economic eva lua t ions  of t h e  pro- 
cess i n  t h i s  r epor t  (Tables 1 and 2) is conserva t ive ,  corresponding t o  a 
poker e f f i c i e n c y  of only 29.3 percent .  
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Aside from the f a c t  that the comparable Bureau of Mines experimental  

c e d 7 )  w a s  an open c e l l ,  the  major d i f f e r e n c e  i n  the  c e l l  used i n  the  p re sen t  

work w a s  the l a r g e r  e l e c t r o d e s  (8.9- v s  3.8-cm diameter) f o r  which the removal 

of ch lo r ine  from t h e  e l e c t r o d e  area would be more d i f f i c u l t  and s h i e l d i n g  of 

the  anode by ch lo r ine  gas bubbles p o t e n t i a l l y  more of a problem. 

e l ec t rodes  i n  the present  c e l l  were 8.8-cm diameter, near-horizontal  p l a t e s ,  

leaving 0.6 cm clearance a t  the  contatner  w a l l .  Rather than t o  complicate the  

c e l l  cover design by using massive e l ec t rodes ,  g raph i t e  rods  of convenient s i z e  
were used t o  make the connections t o  the  anode and cathode. The ca l cu la t ed  I R  

drop i n  these  l e a d s  (e .%. ,  2 V a t  45 amp) was sub t r ac t ed  from t h e  measured 

c e l l  vo l t age  i n  determining the power e f f i c i e n c y  of t h e  c e l l .  

The g raph i t e  

The f irst  group of experiments wi th  e l e c t r o d e s  of d i f f e r e n t  configu- 

r a t i o n  and spacing are summarized i n  Table 11. 

experiments was t o  explore  t h e  e f f e c t  of enhanced c h l o r i n e  removal and e l e c t r o -  

l y t e  c i r c u l a t i o n  on the power e f f i c i e n c y  of t h e  c e l l .  Although a number of 
changes i n  e l ec t rode  design were made, the  effects of t h e  changes on the i n i -  

t i a l l y  improved, 30 percent ,  power e f f i c i e n c y  were so small ( i n  most ca ses  

1 t o  2 percent)  as  t o  possibly be wi th in  experimental e r r o r  and make d i f f i c u l t  

the c o r r e l a t i o n  of any r e a l  but minor e f f e c t .  

The major ob jec t ive  of t hese  

Although one might attempt t o  draw a conclusion from a comparison 

of the  r e s u l t s  of Runs 2 and 3 regarding the  e f f e c t  of s l o t t i n g  the inc l ined  

e l ec t rodes ,  the presence of o the r  v a r i a b l e s  clouds the  p i c t u r e .  

s l o t t i n g  should decrease gas-bubble sh i e ld ing  of the  anode by f a c i l i t a t i n g  

the removal of ch lo r ine ,  i nc reas ing  t h e  c u r r e n t  dens i ty  a c t s  i n  the opposi te  

d i r e c t i o n .  The temperature d i f f e r e n c e  may a l s o  have an e f f e c t  [expected 5 

r e l a t i v e  percent decrease i n  power e f f i c i e n c y ( 7 ) I .  

e f f i c i e n c y  i n  Run 2 i s  hard t o  explain i n  the l i g h t  of p r i o r  and subsequent 

experiments i n  which cu r ren t  e f f i c i e n c i e s  were c o n s i s t e n t l y  above 90 percent.  

In t h i s  case,  a problem was experienced with recovery of the zinc product 

which may account f o r  the low cu r ren t  e f f i c i e n c y .  

t o  discount the r e s u l t s  of Run 2. 

Although the  

Further ,  the  low c u r r e n t  

It  is probably advisable  

The e f f e c t  o t  per fo ra t ing  the anode (Run 4) t o  a i d  i n  the ch lo r ine  

r e l e a s e  was i n  the d i r e c t i o n  expected, i . e . ,  an i n c r e a r ?  i n  both cu r ren t  and 

power ef f icfency. 
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In  Run 5 ,  t he  e f f e c t  of br inging i n  a purge gas  (argon) under t h e  low 

s i d e  of t he  anode t o  inc rease  s a l t  c i r c u l a t i o n *  w a s  i nves t iga t ed .  No net  e f f e c t  

was observed. Thus, i f  any advantage was gained from increased s a l t  c i r c u l a t i o n  

i t  may have been off:et  by increased sh ie ld ing  of t he  anode by the  a d d i t i o n a l  

gas.  

Increasing the  i n c l i n a t i o n  of the  e l e c t r o d e s  t o  12 degrees  t o  hori-  

zon ta l  ( t h e  maximum t h a t  can be accommodated i n  t h e  EPSDU e l e c t r o l y t i c  c e l l  

design) appears t o  have been b e n e f i c i a l  d e s p i t e  t he  absence of grooving and 

pe r fo ra t ion .  Increasing t h e  e l e c t r o d e  spac from 1.27 t o  1.9 cm decreased 

the  power e f f i c i e n c y  by only 1 r e l a t i v e  percent  ( f i v e  r e l a t i v e  Percent decrease 

was recorded a t  the  Bureau of Nines(7) i n  1 3  m/o ZnC12-36 m/o KC1-51 m/o LiCl 

under c therwise comparable cond i t ions ) .  

I n  t h e  second group of experiments, Table 12, t h e  major v a r i a b l e s  

inves t iga t ed  were t h e  c u r r e n t  dens i ty ,  s l a n t  of t h e  e l e c t r o d e s ,  and e l ec t rode -  

to-wall c learance,  t h e  l a t te r  two f a c t o r s  being of p o t e n t i a l  importance i n  the  

release of c h l o r i n e  gas  from underneath t h e  anode. 
Two runs (18 and 20) were made a t  d i f f e r e n t  times under base-line 

conditions:  

4-degree-incl ined planar  8.8-cm-diameter e l ec t rodes ,  

no grooves o r  ho le s ,  Sa l t  Mix 11, 1.27-cm e l e c t r o d e  

spacing, C,80 amps/cm2 c u r r e n t  dens i ty ,  and 499-502 C 

temperature. 

The c u r r e n t  e f f i c i e n c y  values  averaged 95.2 - + 1.5  amps/cm2 and the  power e f f i -  

ciency, 36.3 -- + 0.6 percent ,  

Run 2: t o  increase the  electrc:de-to-wall c learance had the  e f f e c t  of i nc reas ing  

the power e f f i c i e n c y  s l i g h t l y  ( t o  37.9 percent)  i n  the  d i r e c t i o n  expected f o r  

an increase i n  the  ease of ch lo r ine  evo lu t ion  and e l e c t r o l y t e  r i r c u l a t i o n .  

Decreasing the  e l e c t r o d e  area by 25 percent** i n  

The highest  powcr e f f i c i e n c i e s  (38.7 and 42.5 percent)  were obtained 

i n  Runs 1 2  and 1 7 ,  r e spec t ive ly ,  i n  which the  g r e a t e s t  opportxni ty  was provided 

f o r  ch lo r ine  r e l e a s e  (12-degree s l a n t ,  perforated anode, 25 percent  reduced 

a r e a ) .  

t 

* Directed toward decreasing possible  l o c a l  ZnC12 $lepletf m. Argon was i n t r o -  
duced a’, about 3 times the  volumetric c h l o r i n e  generat ion r a t e .  

** Two segments s l i cvd  o f f  c i r c u l a r  anode along p a r a l l e l  symmetrical chords 
3.2 cm a p a r t .  

88 
B A T T E L L E  - C O L U M O U S  



m 
h 

C 
0 
I 
U 
a 
& 
3 
00 
d cu 
C 
0 
V 
aJ a 
0 
& 
U 
U 
Y 
r( 
w 

N 
0 
VI 

VI 

*o m 

9 
U m 

OI 
I- 

0 

h 
N 

r( 
. 

m 
m 
aJ a 

U 
0 
9) 
r( 
Q 
bi 
a 

4 
a 
U 
QJ c 
r( 
U c 
d 
I W  
aJ 
Q X  
k r l  

T J U  
I d  

N m  
4 v 1  

2 

E 

4. 

F 

4 
4 

m 
0 
In 

N 
\o 
OI 

h . 
a0 m 

m 
h 

0 

I- 
N 

r( 
. 

cv 
r( 

m m 
V 

m 
QI m 
. 

lr 

N 
U 

0 
00 

0 

b 
cv 
4 
. 

h 
r( 

N 
rl 
VI 

H 

0 
0 
4 

. 

00 

0 m 
. 

a 
VI 
4 

I-- 
N 

4 
. 

- m  
m u  a s  
'00 
0 0  
& &  

u 
0 0  
$ c  

Q\ 
d 

n 
a 
W 

x 
a 
bi 
&I 

a 

m 

M 

0, s 
C 

r( 

$ 
3 

d 

L' 
$4 
m a 
m 

I 
m 
A 

a 
0 
U 
a 
rr, 

ul 
ai 
r( 
0 c 

n 

B 
I 
U 

cv 
. 

n 
V 

W 



The r e d u l t s  of Run 11 with 1 2 d e g r e e  t i l t ed  p lanar  (unperforated)  

e l e c t r o d e s  were not above base l ine .  

v a r i a b l e s  (mix inhmogeniety?)  masked the  real e f f e c t  of t h e  increased  tilt  

(12 degrees  vs 4 degrees) .  

ind ica ted  by .'-e incidence of two cu r ren t  e f f i c i e n c i e s  u n r e a l i s t i c a l l y  high 

i n  the  neighborhood of 100 percent  (Runs 17 and 19).  

However, i t  is bel ieved that uncont ro l led  

The presence of such uncontrol led v a r i a b l e s  is 

The decreased power e f f i c i e n c y  i n  Run 19 t o  30.8 percent  (compare 

Run 17, 42.5 percent )  can be a t t r i b u t e d  t o  doubling the  c u r r e n t  dens i ty .  

On t he  b a s i s  of these  r e s u l t s ,  the  12-degree s l a n t  ( a c t u a l l y  11 

de? * . = s i ,  i.e., maximum t o l e r a b l e  wi th in  the  ce l l )  w a s  adopted f o r  t he  PDU 
design. I n i t i a l  p lans  were t o  use an unperforated anode and t o  c a r r y  out  

experiments with a per fora ted  e l ec t rode  later. However, t h a t  change w a s  

a c t u a l l y  no t  ma&+-. 

Wetted-::all Conc'enser S tudies  

The by-product from the  fluidized-bed r ekc to r  of t he  PDUIEPSDU design 

is a -anique mixcure c o n s i s t i n g  nominally of t he  following (per one 25 MT S i lyea r  

f luidized-bed r e a c t o r )  : 

Si dus t  0.16 lb/hour 

Sic14 (g) 29.61 lb/hour 

Zn(g) 22.77 lb/hour 

ZnC12 ig)  80.87 lb/hour 

A r  1.15 lb/hour . 
This mixture leaves  the  r eac to r  a t  1.925 C. I f  i t  were gradual ly  cooled, and 

no r eac t ion  occurred, the  bulk of the zinc (86.4 percent )  would condense out  

by the t i m e  the  temperature reached 766 C, near  which temperature the  ZnC12 

would gtart t o  condense out  with 99.3 percent  of t he  ZnC12 and 99.8 percent  

of the  zinc having condensed by the  time the  temperature reached 527 C(1) ,  

st i l l  w e l l  above the  melt ing poin t  of z inc (420 C) and ZnCl2 (318 C). 
i f  t h i s  by-product mixture were allowed t o  cool  gradual ly ,  the  unreacted SiC14(g) 

would react with the  unreacted Zn(g) t o  form a d d i t i o n a l  s i l i c o n *  i n  the  con- 

denser,  which, added t o  the  0.16 lblhour  of dus t  a l ready  i n  the  by-product, 

would probably exceed t h e  capac i ty  of the  e l e c t r o l y t i c  c e l l  t o  c h l o r i n a t e  i t .  

However, 

* The equi l ibr ium e f f i c i e n c y  of t he  r eac t ion  SiC14(g) + 2Zn(g) = S i ( s )  + 2ZnC12(g) 
increases  w i t h  decreasing temperature. 
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Hence, the  by-producr: mixture must be quenched t o  prevent  f u r t h e r  r eac t ion .  

The wetted-wall condenser, i n  which l i q u i d  ZnClz is recirculatec! 

t o  w e t  t he  condensing sur face ,  was designed to  accomplish t h e  condensation 

i n  such a way as t o  have the  fol lowing advantages: 

Operation of t he  condenser su r face  a t  350 C 

would e f f e c t i v e l y  quench t h e  by-product mix- 

t u r e  and prevent f u r t h e r  s i l i c o n  formation. 

Operation below t h e  melt ing po in t  of z inc  

permi ts  keeping the  condensed f i n e l y  d iv ided  

s o l i d  z inc  i n  suspension i n  the  ZnCl2 u n t i l  

t h e  ZnlZnC12 mixture is  heated t o  above the  

melt ing po in t  of z inc  i n  the  e l e c t r o l y t i c  

cel l ,  where the  z inc  coalesces .  

Operation a t  350 C permits  use  of s t a i n l e s s  

steel  i n  con tac t  with the  z inc  ( f i n e l y  divided 

s o l i d )  without t he  swel l ing  of t h e  metal  en- 

countered above t h e  melt ing poin t  of zinc.  

It is e s s e n t i a l  that the  -low of r e - i r c u l a t e d  ZnC12 be s u f f i c i e n t  

t o  prevent dry ing  of t he  wetted w a l l ,  o therwise accumulation of s i l i c o n  d u s t  

o r  z inc  powder would c o n s t r i c t  the  condenser. 

Although wetted-wall columns are used f o r  condensation and absorp t ion  

i n  indus t ry ,  none is known t o  opera te  under t h e  requirements of EPSDU, and the  

ctlances of f ind ing  usefu l  information t h a t  is d i r e c t l y  p e r t i n e n t  are regarded 

as s l i m .  Accordingly, an experimcnt w a s  devised i n  which the  product of t he  

MiniplanL (which should be r ep resen ta t ive  of t h a t  expected from the  EPSDU/PDU) 

was fed i n t o  a wetted-wall condenser, pa t te rned  i n  p r i n c i p l e  a f t e r  t h a t  of t he  

EPSDUIPDU design but  of smaller s i z e .  

In  thL EPSDU/PDU reac to r  condenser design (Figure 12 of t h i s  r e p o r t ) ,  

condensation occurs  i n  th ree  p a r a i l e l  1.5-inch-diameter 10-ft-long channels  a t  
350 C a t  a l i n t a r  flow rate of 8.7. i p s .  In  the  Miniplant wetted-wall condenser 

assembled fo r  the  independent s-udy, a s i n g l e  1-inch-ID tube 6 f e e t  long was 

provided. 

In ;ca:tng the  EPSDU condenser down t o  the Miniplant s i z e ,  one must 

consider  gas flow v e l o c i t y  i n  the  tubes,  Reynolds number, hea t  t r a n s f e r  area, 

and flow of ZnC12 pe r  u n i t  sur face  a r e a ,  as well a s  t o t a l  tube per imeter .  
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Since i t  was obviously imprac t ica l  to  propor t iona l ly  scale a l l  of  these  f a c t o r s ,  

i t  was necessary t o  s e l e c c  those which were thought to  c o n t r i b u t e  most to  t h e  

condenser operat ion.  After  tnese f a c t o r s  were reviewed with RKAII, i t  w a s  

decided t h a t  t he  most p r a c t i c a l  approach to  s i z i n g  which should provide u s e f u l  

information would be based 011 s u r f a c e  area. 

if t h e  Miniplant condenser was undersized so that its condensing capac i ty  l i m i t  

might more e a s i l y  be determined. Accordingly, t h e  area of t h e  Yiniplant  con- 

denser was chosen t o  be only  about 70 percent  of t h a t  which would r e s u l t  from 

a d i r e c t  s i z e  yeduction based on p l a n t  production rates. 

I n  a d d i t i o n ,  i t  would be  b e s t  

The nominal flow rate  c f  l i q u i d  z inc  c h l o r i d e  to  the wetted w a l l  of 

t h e  miniplant  condenser was chosen t o  be e s s e n t i a l l y  t h a t  designed f o r  t h e  EPSDU 

condenser i n  terms of quant i ty  per  u n i t  of condenser arca, or 0.2 g a l l o n s  p e r  

minute f o r  t h e  1-inch-diameter tube. Provis ions were made to  vary  t h e  z inc  

c h l o r i d e  flow rate, to obta in  some i dea  as  to  the  minimum q u a n t i t y  needed to 

maintain a wetted w a l l .  With t h i s  information, the amount suppl ied i n  p r a c t i c e  

could then be conf ident ly  held i n  excess  of t h e  xinimum, so as to  prevent  a 

dry wall condi t ion  and subsequent choking-of f of t he  condenser tube. 

Figure 19 is a schematic diagram showing t h e  inajor f e a t u r e s  of t he  

wetted-wall condenser. The by-product mixture used t o  eva lua te  t h e  candenser 

was generated by a Miniplant r e a c t o r  similar t o  t h a t  p ic tured  i n  Figure l e  of 

t h e  Phase 1/11 Fina l  Repor t ( l ) ,  except that the zinc vapor was routed t o  the  

axial  i n l e t  wi th  the  SIC14 introduced from t he  four surrounding i n l e t s ,  as 

had been the  p r a c t i c e  from Run 56 on i n  the  Miniplant t o  avoid s i l i c o n  depos i t ion  

on the o r i f i c e  p l a t e .  

Duplication, i n  t h e  experimental  condenser, of t h e  Reynolds number 

(4100) a t  which t h e  gases  e n t e r  t he  condenser of the PDU would have required 

t h e  use of a tube less than 0.4 inch i n  diameter and over 1 7  f e e t  i n  length,  

depending upon the  output  of t h e  miniplant .  Since t h i s  was thought to  be 

over ly  c o n s t r i c t e d  and would r e q u i r e  more head room than was a v a i l a b l e ,  a 

r a t i o n a l e  was sought f o r  using a l a r g e r  diameter  tube t h a t  would not  onlv 

decrease  the  danger of f looding o r  c o n s t r i c t i o n .  but would permit the use of 

a s h o r t e r  tube f o r  t he  same sur face  area. 

B v  t he  time about 50 p e r c a t  of the zinc and z inc  tahloride have con- 

densed. the geynolds number f o r  flow i n  the PDU condenser w i l l  have dropped 

ou t  of t he  t r a n s i t i o n a l  range ( N R ~  = 4100) i n t o  the  laminar flow range 
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(NRe = 2500). 

t o  have a g r e a t  e f f e c t  on condenser e f f i c i e n c y  a t  cons tan t  area per  u n i t  

throughput. Hence, the  adopt ic .  of t h e  1-inch-ID* by 6-foot-long condenser 

tube was bel ieved t o  be j u s t i f i e d .  

Under these  c o n d i t i m s ,  t he  flow rate would n o t  be expected 

Flow of ZnC12 to  the  c-ndensing su r face  of t h e  mock-up w a s  prcvided 

by use of interchangeable  ZnC12 r e s e r v o i r s  which, depending upon t h e  ZnC12 

flow chosen, provided f o r  runs  of about 1-hour duration**. The i n i t i a l  run 

was made wi th  pure ZnC12 dra ined  from the  upper r e s e r v o i r  to  t h e  lower. 

sequent runs  were made wi th  ZnC12 containing inc reas ing  amounts of suspended 

zinc and s i l i c o n  dus t  as t h e  p o s i t i o n s  of t h e  reservoirs were interchanged. 

Ti:e r e s e r v o i r s  were of about 16-gallon capac i ty  so that, s t a r t i n g  wi th  one 

conta in ing  %8 ga l lons  of ZnC12, about 20 1-hour runs  would be required t o  

add ZnC12 (+Zn + S i )  t o  t h e  poin t  of reaching the  capac i ty  of t h e  reservoir, 

a t  which t i m e  t h e  concent ra t ion  of z inc and silicon*** would have reached 

about 45 percent  of t h a t  i n  the  950 C equi l ibr ium by-product mixture. As 

t h i s  amounts t o  only  4.5 percent  z inc i n  t h e  ZnC12, t h e  f l u i d i t y  should no t  

be p r o h i b i t i v e l y  changed; however, data on the  apparent  v i s c o s i t y  of t h e  mix- 

t u r e  as a func t ion  of z inc  concent ra t ion  and p a r t i c l e  s i z e  have n o t  been obtained. 

Sub- 

The f i r s t  two 30-minute runs i n  the  condenser mock-up assembly pro- 

ceeded smoothly with good ind ica t ion  by borescope examination t h a t  the  wetted-wall 

p r i n c i p l e  was e f f e c t i v e  i n  c l e a r i n g  the  condenser su r face  of s i l i c o n  and z inc  

s o l i d s .  I t  w a s  observed, however, t h a t ,  due t o  inadequate condenser cool ing  

masked by a def ic iency  i n  the gas-temperature monitoring arrangements, excess ive  

amounts of ZnC12 were escaping t h e  condenser. 

sh i e ld ing  of the gas  temperature thermacouple, s e v e r a l  runs were made t o  e s t a b l i s h  

the proper condenser cool ing  condi t ions .  However, overcool ing a t  t h e  bottom 

( i n l e t )  end of t h e  condenser led  t o  c o n s t r i c t i o n  and f looding of t he  f lu id i zed -  

bed r e a c t o r  with ZnC12. 

With improved pos i t i on ing  and 

Later ,  successfu l  opera t ion  of t he  wetted w a l l  condenser mock-up 

demonstrated t h a t  teinperature con t ro l  i n  tho condenser and c o n t r o l  of t h e  

temperature d i s t r i b u t i o n  a t  the  i n l e t  end of t he  condenser was f a i r l y  c r i t i c a l  

* 
** 
*** 

The capac i ty  of t h e  zinc r e se rvo i r  l imi t ed  t h e  run time. 

F ine ly  divided zinc is the  major component, the  volume of t h e  f i n e l y  divided 
s i l i c o n  is  about 2 percent  t h a t  of tho z i w  on a f u l l y  dense bas i s .  
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t h u s  expla in ing  the  problems experienced with earlier runs. 

temperature con t ro l  was an t i c ipa t ed  t o  be less c r i t i c a l  with the  fu l l - s ca l e  

PDU/EFSDU condenser. 

Fortunately,  

Although undoubtedly open t o  f u r t h e r  Improvement, the c o l l e c t i o n  

e f f i c i e n c y  of t he  ZnC12 and z inc  w a s  much improved over that obtained i n  the 

e a r l i e r  runs,  as judged from the  materials co l l ec t ed  i n  a room-temperature 

glass-wool-packed back-up t r a p  f o r  t he  condenser. On t he  assumption of 63 

percent conversion of Sic14 t o  s i l i c o n  i n  the  Miniplant s ec t ion ,  the  w e t - w a l l  

condenser co l l ec t ed  approximately 92 percent  of t he  ZnC12 formed and 97 percent  

of t he  r e s idua l  z inc vapor. It  w a s  an t i c ipa t ed  t h a t  the  carry-over of ent ra ined  

materials would be decreased i n  the  PDU wetted-wall condenser design s ince  the  

gas stream changes d i r e c t i o n  i n  t h a t  condenser. 
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